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Abstract. Reasonable Ontology Templates (OTTR) is a language for
representing ontology modelling patterns in the form of parameterised
ontologies. Ontology templates are simple and powerful abstractions
useful for constructing, interacting with, and maintaining ontologies.
With ontology templates, modelling patterns can be uniquely identified
and encapsulated, broken down into convenient and manageable pieces,
instantiated, and used as queries. Formal relations defined over templates
support sophisticated maintenance tasks for sets of templates, such as
revealing redundancies and suggesting new templates for representing
implicit patterns. Ontology templates are designed for practical use; an
OWL vocabulary, convenient serialisation formats for the semantic web
and for terse specification of template definitions and bulk instances are
available, including an open source implementation for using templates.
Our approach is successfully tested on a real-world large-scale ontology
in the engineering domain.

1 Introduction

Constructing sustainable large-scale ontologies of high quality is hard. Part of
the problem is the lack of established tool-supported best-practices for ontology
construction and maintenance. From a high-level perspective [12], an ontology
is built through three iterative phases:

1. Understanding the target domain, e.g., the domain of pizzas
2. Identifying relevant abstractions over the domain, e.g., “Margherita is a par-

ticular Italian pizza with only mozzarella and tomato”
3. Formulating the abstractions in a formal language like description logics; here

an adapted excerpt taken from the well-known Pizza ontology tutorial:1

Margherita � NamedPizza � ∃ hasCountryOfOrigin.{Italy} (1)
Margherita � ∃ hasTopping.Mozzarella � ∃ hasTopping.Tomato (2)
Margherita � ∀ hasTopping.(Mozzarella � Tomato) (3)

1 https://protege.stanford.edu/ontologies/pizza/pizza.owl.
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This paper concerns the third task and targets particularly the large gap that
exists between how domain knowledge facts are naturally expressed, e.g., in
natural language, and how the same information must be recorded in OWL.
The cause of the gap is the fact that OWL at its core supports only unary
and binary predicates (classes and properties), and offers no real mechanism
for user-defined abstractions with which recurring modelling patterns can be
captured, encapsulated, and instantiated. The effect is that every single modelled
statement no longer remains a coherent unit but must be broken down into the
small building blocks of OWL. And as there is no trace from the original domain
statement to the ontology axioms, the resulting ontology is hard to comprehend
and difficult and error-prone to manage and maintain.

As a case in point, the Pizza ontology contains 22 different types of pizzas,
all of which follow the same pattern of axioms as the encoding of the Margherita
pizza seen above. For both the user of the ontology and the ontology engineer this
information is opaque. The axioms that make out the instances of the pattern
are all kept in a single set of OWL axioms or RDF triples in the same ontology
document. Since the pizza pattern is not represented as a pattern anywhere,
tasks that are important for the efficient use and management of the ontology,
such as finding pattern instances and verifying consistent use of the pattern, i.e.,
understanding the ontology and updating the pattern, may require considerable
repetitive and laborious effort.

In this paper we present Reasonable Ontology Templates (OTTR), a language
for representing ontology modelling patterns as parameterised ontologies, imple-
mented using a recursive non-cyclic macro mechanism for RDF. A pattern is
instantiated using the macro’s succinct interface. Instances may be expanded by
recursively replacing instances with the pattern they represent, resulting in an
ordinary RDF graph. Section 2 presents the fundamentals of the OTTR language
and exemplifies its use on the pizza pattern. Ontology templates are designed
to be practical and versatile for constructing, using and maintaining ontologies;
the practical aspects of using templates are covered in Sect. 3. Section 4 con-
cerns the maintenance of ontology template libraries. It presents methods and
tools that exploit the underlying theoretical framework to give sophisticated
techniques for maintaining template libraries and ultimately the ontologies built
from those templates. We define different relations over templates and show how
these can be used to define and identify imperfections in a template library, such
as redundancy, and to suggest improvements of the library. We believe ontology
templates can be an important instrument for improving the efficiency and qual-
ity of ontology construction and maintenance. OTTR templates allow the design
of the ontology, represented by a relatively small library of templates, to be
clearly separated from the bulk content of the ontology, specified by a large set
of template instances. This, we believe, supports better delegation of responsi-
bility in ontology engineering projects, allowing ontology experts to build and
manage a library of templates and domain experts to provide content in the
form of structurally simple template instances. To support this claim we report
in Sect. 5 from successful experiments on the use of ontology templates to build
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and analyse Aibel’s large-scale Material Master Data (MMD) ontology. We com-
pare our work with existing approaches in Sect. 6 and present ideas for future
work in Sect. 7.

2 Reasonable Ontology Templates Fundamentals

In this section we develop the fundamentals for OTTR templates as a generic
macro mechanism adapted for RDF.

An OTTR template T consists of a head, head(T), and a body, body(T). The
body represents a parameterised ontology pattern, and the head specifies the
template’s name and its parameters, param(T). A template instance consists of
a template name and a list of arguments that matches the template’s speci-
fied parameters and represents a replica of the template’s body pattern where
parameters are replaced by the instance’s arguments. The template body com-
prises only template instances, i.e., the template pattern is recursively built up
from other templates, under the constraint that cyclic template dependencies
are not allowed. There is one special base template, the Triple template, which
takes three arguments. This template has no body but represents a single RDF

triple in the obvious way. Expanding an instance is the process of recursively
replacing instances with the pattern they represent. This process terminates
with an expression containing only Triple template instances, hence represent-
ing an RDF graph.

Example 1. The SubClassOf template is a simple representation of the
rdfs:subClassOf relationship. It has two parameters, ?sub and ?super, and a body
containing a single instance of the Triple template.

head

SubClassOf

name

(?sub, ?super
parameters

) ::
body

Triple(?sub, rdfs:subClassOf, ?super)
instance

.

An example instance of this template is SubClassOf(:Margherita, :NamedPizza);
it expands, in one step, to a single Triple instance which represents the (single
triple) RDF graph 〈:Margherita, rdfs:subClassOf, :NamedPizza〉.

Each template parameter has a type and a cardinality. (If these are not spec-
ified, as in Example 1, default values apply.) The type of the parameter specifies
the permissible type of its arguments. The available types are limited to a speci-
fied set of classes and datatypes defined in the XSD, RDF, RDFS, and OWL spec-
ifications, e.g., xsd:integer, rdf:Property, rdfs:Resource and owl:ObjectProperty. The
OWL ontology at ns.ottr.xyz/templates-term-types.owl declares all permissible
types and organises them in a hierarchy of subtypes and incompatible types,
e.g., owl:ObjectProperty is a subtype of rdf:Property, and xsd:integer and rdf:Property

are incompatible. The most general and default type is rdfs:Resource. This infor-
mation is used to type check template instantiations; a parameter may not be
instantiated by an argument with an incompatible type.

http://ns.ottr.xyz/templates-term-types.owl
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Fig. 1. Basic OWL OTTR templates

The cardinality of a parameter specifies the number of required arguments
to the parameter. There are four cardinalities: mandatory (written 1), optional
(?), multiple (+), and optional multiple (∗), which is shorthand for ? and +

combined. Mandatory is the default cardinality. Mandatory parameters require
an argument. Optional parameters permit a missing value; none designates this
value. If none is an argument to a mandatory parameter of an instance, the
instance is ignored and will not be included in the expansion. A parameter
with cardinality multiple requires a list as its argument. Instances of templates
that accept list arguments may be used together with an expansion mode. The
mode indicates that the list arguments will in the expansion be used to generate
multiple instances of the template. There are two modes: cross (written x) and
zip (z). The instances to be generated are calculated by temporarily considering
all arguments to the instance as lists, where single value arguments become
singular lists. In cross mode, one instance per element in the cross product of
the temporary lists is generated, while in zip mode, one instance per element
in the zip of the lists is generated. List arguments used without an expansion
mode behave just like regular arguments. Parameters with cardinality optional
multiple also accept none as a value.

Example 2. Figure 1 contains three examples of OTTR templates that capture
basic OWL axioms or restrictions, and exemplify the use of types and cardi-
nalities. The template SubObjectAllValuesFrom represents the pattern ?X �
∀?P.?R and is defined using the SubClassOf and ObjectAllValuesFrom tem-
plates. Note that we allow a Triple instance to be written without its template
name. The parameters of SubObjectAllValuesFrom are all mandatory, and
have respectively the types class, objectProperty and class. The ObjectUnionOf

template represents a union of classes. Here the parameter types are nonLiteral

and class, where the latter has cardinality multiple in order to accept a list of
classes. The type of the first parameter, nonLiteral, prevents an argument of type
literal.

Example 3. The pizza pattern presented in the introduction is represented as an
OTTR template in Fig. 2(a) together with two example instances. The template
takes three arguments: the pizza, its optional country of origin, and its list of
toppings. The cross expansion mode (×) on the SubObjectSomeValuesFrom
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instance causes it to expand to one instance per topping in the list of toppings,
e.g., for the first example instance:

– SubObjectSomeValuesFrom(:Margherita, :hasTopping, :Mozzarella) and
– SubObjectSomeValuesFrom(:Margherita, :hasTopping, :Tomato),

creating an existential value restriction axiom for each topping, which results
in the set of axioms seen in (2) of the pizza pattern in Sect. 1. By joining
SubObjectAllValuesFrom and ObjectUnionOf with a blank node ( :b1), we
get the universal restriction to the union of toppings (3). Note that the list of
toppings is used both to create a set of existential axioms and to create a union
class. The optional ?Country parameter behaves so that the SubObjectHasValue

instance is not expanded but removed in the case that ?Country is none. The first
NamedPizza instance in the figure represents exactly the same set of axioms as
the listing in Sect. 1.

We conclude this section with the remark that it is in principle possible to
choose a “base” other than RDF for OTTR templates, with suitable changes to
typing and to which templates are designated as base templates. For instance,
we could let templates such as SubClassOf, SubObjectAllValuesFrom, etc. be
our base templates, to form a foundation based on OWL. These templates could
then be directly translated into corresponding OWL axioms in some serialisation
format. (An OTTR template can also be defined as a parameterised Description
Logic knowledge base [2].) We have chosen here to base OTTR templates on
RDF as this makes a simpler base, and broadens the application areas of OTTR

templates, while still supporting OWL.

3 Using Ontology Templates

In this section we present the resources available to enable efficient and practi-
cal use of ontology templates: serialisation formats for templates and template
instances, tools, formats and specifications that can be generated from templates,
and online resources.

Languages. There are currently three serialisation formats for representing tem-
plates and template instances: stOTTR,wOTTR, and tabOTTR.

stOTTR2 is the format used in the examples of Sect. 2 and is developed to
offer a compact way of representing templates and instances that is also easy to
read and write.

However, to enable truly practical use of OTTR for OWL ontology engineer-
ing, we have developed a special-purpose RDF/OWL vocabulary, called wOTTR,
with which OTTR templates and instances can be formulated. This has the
benefit that we can leverage the existing stack of W3C languages and tools for
developing, publishing, and maintaining templates. The wOTTR format supports

2 https://gitlab.com/ottr/language/stOTTR/.

https://gitlab.com/ottr/language/stOTTR/
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writing Triple instances as regular RDF triples. This means that a pattern rep-
resented by an RDF graph or RDF/OWL ontology can easily be turned into an
OTTR template by simply specifying the name of the template and its parame-
ters with the wOTTR vocabulary. Furthermore, this means that we can make use
of existing ontology editors and reasoners to construct and verify the soundness
of templates. The wOTTR representation has been developed to closely resem-
ble stOTTR. It uses RDF resources to represent parameters and arguments, and
RDF lists (which have a convenient formatting in Turtle syntax) for lists of
parameters and arguments. The vocabulary is published at ns.ottr.xyz. A more
thorough presentation of the vocabulary is found in [13].

tabOTTR3 is developed particularly for representing large sets of template
instances in tabular formats such as spreadsheets, and is intended for domain
expert use.

Generated Queries and Format Specifications. A template may not only be used
as a macro, but also, inversely, as a query that retrieves all instances of the
pattern and outputs the result in the tabular format of the template head. From
a template we can generate queries from both its expanded and unexpanded
body. The expanded version allows us to find instances of a pattern in “vanilla”
RDF data, while the unexpanded version can be used to collect and transform
(in the opposite direction than of expansion) a set of template instances into an
instance of a larger template. The latter form is convenient for validating the
proper usage of templates within a library, which we present in Sect. 4.

We are also experimenting with generating other specifications from a tem-
plate, for instance XSD descriptions of template heads, and transformations of
these formats, e.g., XSLT transformations. The purpose of supporting other for-
mats is to allow for different data input formats and leverage existing tools for
input verification and bulk transformation of instance data to expanded RDF,
such as XSD validators and XSLT transformation engines.

Tools and Online Resources. Lutra, our Java implementation of the OTTR tem-
plate macro expander, is available as open source with an LGPL licence at
gitlab.com/ottr. It can read and write templates and instances of the formats
described above and expand them into RDF graphs and OWL ontologies, while
performing various quality checks such as parameter type checking and checking
the resulting output for semantic consistency. Lutra is also deployed as a web
application that will parse and display any OTTR template available online. The
template may be expanded and converted into all the formats mentioned above,
including SPARQL SELECT, CONSTRUCT and UPDATE queries, XSD format,
and variants of expansions which include or exclude the head or body.

Also available, at library.ottr.xyz, is a “standard” set of ontology templates
for expressing common RDF, RDFS, and OWL patterns as well as other example
templates. These templates are conveniently presented in an online library that
is linked to the online web application.

3 https://gitlab.com/ottr/language/tabOTTR/.

http://ns.ottr.xyz
http://gitlab.com/ottr
http://library.ottr.xyz
https://gitlab.com/ottr/language/tabOTTR/
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Fig. 2. NamedPizza template and example instances in different serialisations

Example 4. Figure 2 contains different representations of the NamedPizza tem-
plate. Figure 2(b) contains the published version of the template, available at its
IRI address: http://draft.ottr.xyz/pizza/NamedPizza. Figure 2(c) contains the
expansion of the template body. Figure 2(d) displays the generated SPARQL

query that retrieves instances of the pizza pattern; an excerpt of the results
applying the query to the Pizza ontology is given in Fig. 2(e). Figure 2(f) con-
tains a tabOTTR representation of the two instances seen in Fig. 2(a). We encour-
age the reader to visit the rendering of the template by the web application at
osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza and explore the

http://draft.ottr.xyz/pizza/NamedPizza
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza
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various presentations and formats displayed. An example-driven walk-through
of the features of Lutra can be found at ottr.xyz/event/2018-10-08-iswc/.

4 Maintenance and Optimisation of OTTR Template
Libraries

In this section, we present an initial list and analysis of some of the more central
relations between OTTR templates, and discuss their use in template library
optimisation. We focus in particular on removing redundancy within a library,
where we distinguish two different types of redundancy: a lack of reuse of exist-
ing templates, as well as recurring patterns not captured by templates within
the library. We present an efficient and automated technique for detecting such
redundancies within an OTTR template library.

4.1 OTTR Template Relations

Optimisation and maintenance of OTTR template libraries is made possible by
its solid formal foundation. OTTR syntax makes it possible to formally define
relations between OTTR templates which can tangibly benefit the optimisation
of a template library. Naturally, there are any number of ways templates can
be “related” to one another, and the “optimal” size and shape of a template
library is likely to be highly domain and ontology-specific. As such, we do not
aspire to a best-practice approach to optimising a template library. Instead, we
illustrate the point by defining a few central template relations and demonstrat-
ing their usefulness for library optimisation and maintenance, independently of
the heuristics used. Here, we limit ourselves to template relations defined syn-
tactically in terms of instances, and do not consider, e.g., those defined in terms
of semantic relationships between full expansions of templates. We consider the
following template relations:

directly depends (DD) S directly depends on T if S’s body has an instance
of T.

depends (D) depends is the transitive closure of directly depends.
dependency-overlaps (DO) S dependency-overlaps T if there exists a tem-

plate upon which both S and T directly depend.
overlaps (O) S overlaps T if there exist template instances i

S
, i

T
in body(S) and

body(T) and substitutions ρ and η of the parameters of S and T resp. such
that ρ(i

S
) = i

T
and η(i

T
) = i

S
.

contains (C) S contains T if there exists a substitution ρ of the parameters of
T such that ρ(body(T)) ⊆ body(S).

equals (E) S is equal to T if S contains T and vice versa.

Each of the listed relations is, in a sense, a specialisation of the previous one
(except for DO, which is a specialisation of DD as opposed to D). For instance,
DO imposes no restrictions on the instance arguments, whereas O intuitively
requires parameters to occur in compatible positions of i

S
and i

T
.

http://www.ottr.xyz/event/2018-10-08-iswc/
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Fig. 3. OTTR template library before and after redundancy removal
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Example 5. Consider the template library given in Fig. 3(a). All but
the BurgerMeal template contain an instance of SubClassOf, hence
all pairs of templates except for (AnnotatedPizza,BurgerMeal) have
a dependency-overlap. Closer inspection reveals that Burger contains
SubObjectAllValuesFrom (4, Fig. 1), due to the instances

– SubClassOf(?Name, :b2)
– ObjectAllValuesFrom( :b2, :hasCondiment, :b3)

in Burger (6). (Numbers refer to numbered lines in the figures.) Finally,
AnnotatedPizza and Burger overlap, since they both directly depend on
the same Triple templates (5) and (8). These relationships are depicted in
the graph below (dependency relationships omitted for the sake of legibility).
Directed/undirected edges depict nonsymmetric/symmetric relations, respec-
tively.

NamedPizza

AnnotatedPizza

BurgerMeal

Burger SubObjectAllValuesFrom

DO DO

DO

O

DO

C

We wish to discuss these relations in the context of redundancy removal
within an OTTR template library. More specifically, we discuss two types of
redundancy:

Lack of reuse is a redundancy where a template S has a contains relationship
to another template T, instead of a dependency relationship to T. That is,
S duplicates the pattern represented by T, rather than instantiating T. This
can be removed by replacing the offending portion of body(S) with a suitable
instance of T. A first approach to determining such a lack of reuse makes use
of the fact that templates can be used as queries: template S contains T iff
T as a query over S yields answers.

Uncaptured pattern is a redundancy where a pattern of template instances is
used by multiple templates, but this pattern is not represented by a template.
In order to find uncaptured patterns one must analyse in what manner mul-
tiple templates depend on the same set of templates. If multiple templates
overlap as defined above, this is a good candidate for an uncaptured pat-
tern. However, an overlap does not necessarily need to occur for an uncap-
tured pattern to be present: as demonstrated in the following example, a
dependency-overlap can describe an uncaptured pattern that is relevant for
the template library.

Example 6. Continuing with our previous example of the library in Fig. 3(a), we
find that it contains both an instance of lack of reuse and multiple instances of
uncaptured patterns. The containment of SubObjectAllValuesFrom in Burger

indicates a lack of reuse, and the overlap of Burger and AnnotatedPizza
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is an uncaptured pattern which we refactor into the template Annotation

(11). By repairing the lack of reuse in Burger (6) with an instance of
SubObjectAllValuesFrom, there are two dependency-overlaps that represent
uncaptured patterns: the instances (6,7)(9), which are refactored into a new
template SubObjectAllValuesFromUnion (12), and the dependency-overlap
between Burger and NamedPizza, which is described by the NamedFood tem-
plate (10). These new templates as well as the updated template definitions for
the pre-existing ones are given in Fig. 3(b).

4.2 Efficient Redundancy Detection

Naive methods for improving a template library using the relations as described
in the previous section quickly become infeasible for large knowledge bases, as
they require expensive testing of unification of all template bodies. We have
developed an efficient method for finding lack of reuse and uncaptured patterns,
which over-approximates the results of unification. The method uses the notion
of a dependency pair, which intuitively captures repeated use of templates with-
out considering parameters: a dependency pair 〈I, T 〉 is a pair of a multiset of
templates I and a set of templates T , such that T is the set of all templates
that directly depend on all templates in I, and have at least as many directly
depends relationships to each template in I as they occur in I. The idea is that
I represents a pattern used by all the templates in T . In order to also detect pat-
terns containing different Triple instances, we will in this section treat a Triple

instance (s, p, o) as a template instance of the form p(s, o) and thus treat p as
a template. Note that for a set of dependency pairs generated from a template
library, the first element in the pair, i.e., the I, is unique for the set, while the
T is generally not unique.

Example 7. Three examples of dependency pairs from the library in Fig. 3(a)
are

1. 〈{SubClassOf, SubClassOf, rdfs:label}, {Burger}〉
2. 〈{SubClassOf,ObjectAllValuesFrom}, {SubObjectAllValuesFrom,

Burger}〉
3. 〈{skos:definition, rdfs:label, skos:prefLabel}, {AnnotatedPizza,Burger}〉
The first pair indicates that Burger is the only template that directly depends
on two occurrences of SubClassOf and one occurrence of rdfs:label. Note that
Burger directly depends on other templates too, and these will give rise to
other dependency pairs. However there is no other template than Burger that
directly depends on this multiset of templates. The second example shows
that SubObjectAllValuesFrom and Burger directly depend on the templates
SubClassOf and ObjectAllValuesFrom.

One can compute all dependency pairs by starting with the set of dependency
pairs of the form 〈{i : n}, T 〉 where all templates in T have at least n instances
of i, and then compute all possible merges, where a merge between two clusters
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〈I1, T1〉 and 〈I2, T2〉 is 〈I1 ∪ I2, T1 ∩ T2〉. We have implemented this algorithm
with optimisations that ensure we compute each dependency pair only once.

The set of dependency pairs for a library contains all potential lack of reuse
and uncaptured patterns in a library. However, note that in the dependency pairs
where either I or T has only one element, the dependency pair does not represent
a commonly used pattern: If I has only one element then it does not represent a
redundant pattern. If T has only one element then the pattern occurs only once.
If on the other hand both sets contain two or more elements then the dependency
pair might represent a useful pattern to be represented as a template, and we
call these candidate pairs.

For a candidate pair, there are three cases to consider: 1. the set of instances
does not form a pattern that can be captured by a template, as the usage of the
set of instances does not unify; 2. the pattern is already captured by a template,
in which case we have found an instance of lack of reuse; otherwise 3. we have
found one or more candidates (one for each non-unifiable usage of the instances
of I) for new templates. The two first cases can be identified automatically, but
the third needs user interaction to assess. First, a user should verify for each of
the new templates that it is a meaningful pattern with respect to the domain;
second, if the template is meaningful, a user must give the new template an
appropriate name.

To remove the redundancy a candidate pair 〈I, T 〉 represents, we can perform
the following procedure for each template t ∈ T and T ′ = T \ {t}. First we
check for lack of reuse of t: this may only be the case if t’s body has the same
number of instances as there are templates in I. We verify the lack of reuse by
checking if t′ ∈ T ′ contains t; this is done by verifying that t used as a query
over t′’s body yields an answer. If there is no lack of reuse, we can represent the
instances of I as they are instantiated in t, as the body of a new template where
all arguments are made into parameters. Again, we need to verify that the new
template is contained in other templates in T ′ before we can refactor, and before
any refactoring is carried out, a user should always assess the results.

Example 8. Applying the method for finding candidates to the library in
Fig. 3(a), gives 19 candidate pairs, two of which are the 2nd and 3rd candidate
pair of Example 7. The 1st dependency pair of Example 7 is not a candidate pair
since the size of one of its elements ({Burger}) is one.

By using the process of removing redundancies as described above, we
will find that for the 2nd candidate pair of Example 7 we have a lack
of reuse of SubObjectAllValuesFrom in Burger, as discussed in previous
examples. The two instances of SubClassOf and ObjectAllValuesFrom in
Burger (see Example 5) can be therefore be replaced with the single instance:
SubObjectSomeValuesFrom(?Name, :hasCondiment, :b3).

From the 3rd candidate pair in Example 7 there is no lack of reuse, but we
can represent the pattern as the following template:

<name>(?x1, ?x2, ?x3, ?x4)
:: (?x1, rdfs:label, ?x2), (?x1, skos:prefLabel, ?x3), (?x1, skos:definition, ?x4).
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The template and parameters should be given suitable names and param-
eters given a type, as exemplified by the Annotation template (11) found
in Fig. 3(b). The procedure of identifying dependency pairs and lack of
reuse is implemented and demonstrated in the online walk-through at
ottr.xyz/event/2018-10-08-iswc/.

For large knowledge bases, the set of candidate pairs might be very large, as it
grows exponentially in the number of template instances in the worst case. This
means that manually assessing all candidate pairs is not feasible, and smaller
subsets of candidates must be automatically suggested. We have yet to develop
proper heuristics for suggesting good candidates, but the cases with the most
common patterns (the candidates with largest T -sets), the largest patterns (the
candidates with the largest I-sets), or large patterns that occur often could be
likely sources for patterns to refactor. The latter of the three can be determined
by maximising a weight-function, for instance of the form f(〈I, T 〉) = w1|I| +
w2|T |. However, these weights might differ from use-case to use-case. Another
approach for reducing the total number of candidates to a manageable size, is to
let a user group some or all of the templates according to subdomain, and then
only present candidates with instances fully contained in a single group. The
idea behind such a restriction is that it seems likely that a pattern is contained
within a subdomain. We give an example of these techniques in the following
section.

5 Use Case Evaluation

In this section we outline an evaluation of OTTR templates in a real-world setting
at the engineering company Aibel, and demonstrate in particular our process of
finding and removing redundancies over a large, generated template library.

Aibel is a global engineering, procurement, and construction (EPC) service
company based in Norway best known for its contracts for building and main-
taining large offshore platforms for the oil and gas industry. When designing an
offshore platform, the tasks of matching customer needs with partly overlapping
standards and requirements as well as finding suitable products to match design
specifications are highly non-trivial and laborious. This is made difficult by the
fact that the source data is usually available only as semi-structured documents
that require experience and detailed competence to interpret and assess. Aibel
has taken significant steps to automate these tasks by leveraging reasoning and
queries over their Material Master Data (MMD) ontology. It integrates this infor-
mation in a modular large-scale ontology of ∼200 modules and ∼80,000 classes
and allows Aibel to perform requirements analysis and matching with greater
detail and precision and less effort than with their legacy systems. Since the
MMD ontology is considered by Aibel as a highly valuable resource that gives
them a competitive advantage, it is not publicly available.

The MMD ontology is produced from 705 spreadsheets prepared by ontology
experts and populated by subject matter experts with limited knowledge of

http://www.ottr.xyz/event/2018-10-08-iswc/
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Fig. 4. A scatter plot of the sizes of the two sets for all candidate pairs from Aibel
use case. The colour shade denotes the logarithm of the number of candidates at each
point.

modelling and semantic technologies. The column headers of the spreadsheets
specify how the data is to be converted into an ontology, and the translation
is performed by a custom-built pipeline of custom transformations, relational
databases, and SPARQL CONSTRUCT transformations. The growing size and
complexity of the system, the simple structure of the spreadsheets and lack of
common modelling patterns make it hard to keep an overview of the information
content of the spreadsheets and enforce consistent modelling across spreadsheets.
The absence of overarching patterns also represents a barrier for Aibel’s wish to
extend the ontology to cover new engineering disciplines, as there are no patterns
that are readily available for reuse.

The aim of our evaluation is to test whether OTTR templates and the tools
presented in this paper can replace Aibel’s current in-house built system and
improve the construction and maintenance of the MMD ontology. By exploit-
ing the simple structure of the spreadsheets we automatically generated OTTR

templates: one for each spreadsheet (705 templates), one for each unique column
header across spreadsheets (476 templates), and one for each axiom pattern used,
e.g., existential restriction axiom (4 templates).

To analyse the large template library, we applied the algorithm for finding
candidate pairs described in Sect. 4.2, giving a total of 54,795,593 candidate
pairs. The scatter plot in Fig. 4 shows the distribution of sizes for the two sets;
the largest number of instances and templates for a given candidate is 24 and
474, respectively. The large number of candidates makes it impossible to man-
ually find potential templates, thus we employed the semi-automatic method
described in the previous section to suggest possible improvements to the library.
In order to demonstrate the process, we selected the candidates that contain a
specific template, the template modelling a particular type of pipe elbows from
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the AMSE B16.9 standard, which is an often-used example from the MMD ontol-
ogy. This template occurs in a total of 12,273 candidates. To reduce the number
of candidates further, we removed candidates with instances of a generic charac-
ter, such as rdfs:label, to end up with candidates with domain-specific tem-
plates. By using a weight function, we selected the candidate with the largest
set of templates and at least 6 instances. From this candidate, with 33 templates
and 7 instances, we obtained a template suggestion that we were able to verify is
contained by all of the 33 templates in T , by using the template as a query over
the templates in T . We added this new template to the library and refactored it
into all the 33 templates using its pattern.

Fixing this single redundancy reduced the total number of candidates by
over 1.8 million. This great reduction in candidates comes from the fact that
fixing a redundancy represented by a candidate C can also fix the redundancies
of candidates having a pattern that is contained in, contains, or overlaps C’s
pattern. This indicates that, despite a very large number of candidates, small
fixes can dramatically reduce the overall redundancy. Furthermore, by automat-
ically refactoring all lack of reuse in the entire library, the number of candidates
decreases to under 3 million. The average number of instances per template went
from 5.6 down to 2.7 after this refactoring. In addition to the redundancies fixed
above, we were also able to detect equal templates (pairs of templates both hav-
ing a lack of reuse of the other). Out of the 931 templates we analysed, only 564
were unique. Thus, we could remove a total of 367 redundant templates from
the library. Note that all of the improvements made above should be reviewed
by a user, as discussed in Sect. 4.2, to ensure that the new template hierarchy
properly represents the domain.

The use case evaluation indicates that OTTR templates and tools can replace
Aibel’s custom built approach for transforming spreadsheets into ontologies.
Indeed, OTTR greatly exceeds the expressivity of Aibel’s spreadsheet structure
and provides additional formal structure that can be used to analyse and improve
the modelling patterns used to capture domain knowledge. As future evaluation,
we want to work with Aibel’s domain experts in order to identify promising
heuristics for finding the best shared patterns. We believe that these new pat-
terns and user requirements from Aibel may foster new ideas for added expres-
sivity and functionality of OTTR languages and tools. Furthermore, we want
to evaluate whether we can replace Aibel’s hand-crafted queries with queries
generated from templates. This would avoid the additional cost of maintaining a
large query library, while benefiting from already existing templates and OTTR’s
compositional nature and tools for building and analysing the generated queries.

6 Related Work

Modularised ontologies, as well as the use and description of ontology design
patterns, have attracted significant interest in recent years, as demonstrated
by the multitude of languages and frameworks that have emerged. However, a
hurdle for the practical large-scale use of ontology design patterns is the lack of
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a tool supported methodology; see [4] for a discussion of some of the challenges
facing ontology design patterns. In this section we present selected work related
to our approach that we believe represents the current state of the art.

An early account of the features, benefits and possible use-cases for a macro
language for OWL can be found in [14].

The practical and theoretical aspects of OTTR templates were first intro-
duced in [13] and [2]. This paper presents a more mature and usable frame-
work, including formalisation and use of template relations, real-world evalua-
tion, added expressivity in the form of optional parameters and expansion modes,
and new serialisation formats.

GDOL [9] is an extension of the Distributed Ontology, Modelling, and Specifi-
cation Language (DOL) that supports a parametrisation mechanism for ontolo-
gies. It is a metalanguage for combining theories from a wide range of logics
under one formalism while supporting pattern definition, instantiation, and nest-
ing. Thus it provides a broad formalism for defining ontology templates along
similar lines as OTTR. To our knowledge, GDOL has yet to investigate issues
such as dependencies and relationships between patterns, optional parameters,
and pattern-as-query (the latter being listed as future work). A protege plugin
for GDOL is in the works and DOL is supported by Ontohub (an online ontology
and specification repository) and Hets (parsing and inference backend of DOL).

Ontology templates as defined in [1] are parameterised ontologies in ALC
description logic. Only classes are parameterised, and parameter substitutions
are restricted to class names. This is quite similar to our approach, yet it is not
adapted to the semantic web, and nested templates and patterns-as-queries are
not considered. Furthermore, it appears this project has been abandoned, as the
developed software is no longer available.

OPPL [6] was originally developed as a language for manipulating OWL

ontologies. Thus it supports functions for adding and removing patterns of OWL

axioms to/from an ontology. It relies heavily on its foundations in OWL-DL and
as such can only be used in the context of OWL ontologies. Despite this, the
syntax of OPPL is distinct from that of RDF, thus requiring separate tools for
viewing and editing such patterns, though a Protégé plugin does exist, in addition
to a tool called Populous [7] which allows OPPL patterns to be instantiated via
spreadsheets. By allowing patterns to return a single element (e.g., a class) OPPL

supports a rather restricted form of pattern nesting as compared to OTTR.
Tawny OWL [10] introduces a Manchester-like syntax for writing ontology

axioms from within the programming language Clojure, and allows abstractions
and extensions to be written as normal Clojure code alongside the ontology.
Thus the process of constructing an ontology is transformed into a form of pro-
gramming, where existing tools for program development, such as versioning,
testing frameworks, etc. can be used. The main difference from our approach is
that Tawny OWL targets programmers and therefore tries to reuse as much of
the standards and tools used in normal Clojure development, whereas we aim
to reuse semantic technology standards and tools.
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OPLa [5] is a proposal for a language to represent the relationships between
ontologies, modules, patterns, and their respective parts. They introduce the
OPLa ontology which describes these relationships with the help of OWL anno-
tation properties. This approach does not, however, attempt to mitigate issues
arising with the use of patterns, but focuses more on the description of patterns,
than on practical use.

There are other tools and languages such as XDP [3], built on top of
WebProtégé as a convenient tool for instantiating ODPs, the M2 mapping lan-
guage [11] that allows spreadsheet references to be used in ontology axiom pat-
terns, and RDF shape languages, such as SHACL [8], that may be used to describe
and validate patterns. Although these have similarities with OTTR, we consider
these more specialised tools and languages, where for example analysis of pat-
terns is beyond their scope.

7 Conclusion and Future Work

This paper presents OTTR, a language with supporting tools for representing,
using and analysing ontology modelling patterns. OTTR has a firm theoretical
and technological base that allows existing methods, languages and tools to be
leveraged to obtain a powerful, yet practical instrument for ontology construc-
tion, use and maintenance.

For future work, the natural next step with respect to template library opti-
misation is to continue and expand the analysis of Sect. 4, both for existing and
new template relations. In particular, it is natural to compare templates both
syntactically using their full expansion and in terms of their semantic relation-
ship. The latter would allow us, e.g., to answer questions about consistency and
whether a given library is capable of describing a certain knowledge pattern. We
also want to develop specialised editors for OTTR templates, such as a plugin
for Protégé, and extend support for more input formats, such as accessing data
from relational databases.
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