
SPgen: A Benchmark Generator
for Spatial Link Discovery Tools

Tzanina Saveta1(B), Irini Fundulaki1, Giorgos Flouris1,
and Axel-Cyrille Ngonga-Ngomo2

1 Institute of Computer Science - FORTH, Heraklion, Greece
jsaveta@ics.forth.gr

2 University of Paderborn, Paderborn, Germany

Abstract. A number of real and synthetic benchmarks have been pro-
posed for evaluating the performance of link discovery systems. So far,
only a limited number of link discovery benchmarks target the problem
of linking geo-spatial entities. However, some of the largest knowledge
bases of the Linked Open Data Web, such as LinkedGeoData contain
vast amounts of spatial information. Several systems that manage spatial
data and consider the topology of the spatial resources and the topolog-
ical relations between them have been developed. In order to assess the
ability of these systems to handle the vast amount of spatial data and
perform the much needed data integration in the Linked Geo Data Cloud,
it is imperative to develop benchmarks for geo-spatial link discovery. In
this paper we propose the Spatial Benchmark Generator SPgen that can
be used to test the performance of link discovery systems which deal
with topological relations as proposed in the state of the art DE-9IM
(Dimensionally Extended nine-Intersection Model). SPgen implements
all topological relations of DE-9IM between LineStrings and Polygons
in the two-dimensional space. A comparative analysis with benchmarks
produced using SPgen to assess and identify the capabilities of AML,
OntoIdea, RADON and Silk spatial link discovery systems is provided.

1 Introduction

The number of datasets published in the Web of Data as part of the Linked
Data Cloud is constantly increasing. The Linked Data paradigm is based on the
publication of information by different publishers, and the interlinking of Web
resources across knowledge bases. In most cases, the cross-dataset links are not
integral to newly created datasets and must be determined automatically, using
link discovery tools amongst others [1]. The large variety of techniques demands
the availability of comparative evaluations to determine which one is best suited
for a given use case. Performing such an assessment requires well-defined and
widely accepted benchmarks to determine the weak and strong points of the
proposed techniques and/or tools. A number of real and synthetic benchmarks
have been proposed for evaluating the performance of such systems [2].

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 408–423, 2018.
https://doi.org/10.1007/978-3-030-00671-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_24&domain=pdf


SPgen: A Benchmark Generator for Spatial Link Discovery Tools 409

So far, only a limited number of link discovery benchmarks target the prob-
lem of linking geo-spatial entities. However, some of the largest knowledge bases
in the Linked Open Data Web are geo-spatial knowledge bases (e.g., LinkedGeo-
Data,1 with more than 30 billion triples). In particular, considering the topology
of the spatial resources and the topological relations between them is of central
importance to systems that manage spatial data. We believe that due to the
large amount of available geo-spatial datasets employed in various domains, it
is critical that benchmarks for geo-spatial link discovery are developed.

In this paper we discuss the Spatial Benchmark Generator SPgen that can be
used to test the performance of systems that deal with topological relations pro-
posed by the state of the art DE-9IM (Dimensionally Extended nine-Intersection
Model) [3]. SPgen is developed in the context of the H2020 European project
HOBBIT.2 This benchmark generator implements all topological relations of
DE-9IM between LineStrings and Polygons in the two-dimensional space. SPgen
follows the choke point-based approach [4] for benchmark design, i.e., it focuses
on the technical difficulties of existing systems and implements tests that address
those difficulties and “push” systems to resolve them. More specifically we focus
on the following choke-points in SPgen:

– Scalability: produce datasets large enough to stress the systems under test
– Output quality: compute precision, recall and f-measure
– Time performance: measure the time the systems need to return the results

To the best of our knowledge such a generic benchmark generator, that checks
the performance of linking systems for spatial data, does not exist. We also
provide a comparative analysis with benchmarks produced using SPgen to assess
and identify the capabilities of AML [5,6], OntoIdea [7], RADON [8] and Silk [9]
spatial link discovery systems.

The outline of the paper is as follows: Sect. 2 discusses related work. We
present the Dimensionally Extended nine-Intersection Model and the datasets
employed in SPgen in Sects. 3 and 4 respectively. SPgen is described in detail in
Sect. 5 and the experiments we conducted in Sect. 6. We conclude and present
future work in Sect. 7.

2 Related Work

SPgen is a generic, schema agnostic and choke-point based [4] benchmark gen-
erator that takes as input trajectories and checks the performance of linking
systems for spatial data. To the best of our knowledge this is the first link
discovery benchmark for spatial data. In this section we will discuss the most
relevant benchmarks to SPgen and more specifically benchmarks for spatial RDF
stores and benchmarks for spatial relational databases.

1 http://linkedgeodata.org/About.
2 http://www.project-hobbit.eu.

http://linkedgeodata.org/About
http://www.project-hobbit.eu


410 T. Saveta et al.

Benchmarks for Spatial RDF Stores. The most relevant benchmark to
SPgen is Geographica [10] that evaluates RDF stores and consists of micro and
macro benchmarks following the approach of Jackpine [11]. Geographica’s micro
benchmark tests the spatial components of RDF stores using queries that consist
of spatial selections, joins and aggregations but it does not address topological
relations. Geographica’s macro benchmark tests the performance of the RDF
stores using reverse geocoding, map search and browsing and a real-world use
case from the Earth Observation domain. Kolas [12] proposed a benchmark that
extends the LUBM benchmark for RDF stores [13] in order to include spatial
entities. In this case, LUBM queries were extended to cover basic types of spatial
queries namely location, range, join and nearest neighbor.

Benchmarks for Spatial Relational Databases. The most recent bench-
mark for spatial databases and the most relevant benchmark to SPgen is Jack-
pine [11] and consists of a micro and a macro benchmark. Jackpine’s micro
benchmark includes queries based on DE-9IM with queries that focus on spa-
tial analysis. Jackpine’s macro benchmark includes queries based on spatial data
applications (search and browsing, geocoding, flood risk analysis, etc.). VESPA
[14] is a vector-based spatial benchmark that tests the functionality and perfor-
mance of spatial database systems and includes a set of query and update tasks
over synthetic datasets composed of points, lines and polygons. The Á la Carte
[15] benchmark produces a synthetic dataset composed only of rectangles and
is used to test the performance of different spatial join techniques. Last but not
least, one of the first benchmarks that uses real datasets and real queries rep-
resentative of Earth Science tasks is SEQUOIA [16] and its extension [17]. The
queries are related to data loading, raster data management, filtering, spatial
joins and path computation over graphs.

3 Dimensionally Extended Nine-Intersection Model
(DE-9IM)

The Dimensionally Extended nine-Intersection Model (DE-9IM) [3] or
Clementini-Matrix is used for computing the spatial relationships between
geometries. It is a topological model, based on the Nine-Intersection Model
(9IM), used to describe the spatial relations of geometries in two-dimensional
space. The model considers the objects’ interiors, boundaries and exteriors and
analyzes the intersections of these nine objects parts to determine their relation-
ship.

Spatial relations are boolean functions that are used to test the relation-
ships between two geometry objects. The spatial relationships described by DE-
9IM are equals, disjoint, touches, contains, within, intersects, covers, covered by,
crosses and overlaps including relations among LineStrings and Polygons. A
LineString is a one-dimensional geometric object and consists of a sequence of
two or more vertices, along with all points along the linearly interpolated curves
(line segments) between each pair of consecutive vertices. The line segments in



SPgen: A Benchmark Generator for Spatial Link Discovery Tools 411

the line may intersect each other. A Polygon is a two-dimensional surface stored
as a sequence of points where the first point is connected to the last point defin-
ing its exterior bounding ring and zero or more interior rings. In order to better
understand the topological relations of DE-9IM it is necessary to define the
boundary, interior and exterior of the geometric types. For instance, in the case
of LineString, the boundary (B) are the two end points, the interior (I) consists
of points that are left when the boundary points are removed and the exterior
(E) are the points not in the interior or boundary. In the case of Polygon, the
interior are the points within the rings, the boundary is a set of rings and finally
the exterior are points not in the interior or boundary.

Given that each geometry is represented by the aforementioned 3 dimensions,
all possible relationships between two geometries are represented by a 3 × 3
matrix of the form:

DE9IM(a, b) =

⎡
⎣

dim(I(a) ∩ I(b)) dim(I(a) ∩ B(b)) dim(I(a) ∩ E(b))
dim(B(a) ∩ I(b)) dim(B(a) ∩ B(b)) dim(B(a) ∩ E(b))
dim(E(a) ∩ I(b)) dim(E(a) ∩ B(b)) dim(E(a) ∩ E(b))

⎤
⎦

where dim is the maximum number of dimensions of the intersection (∩) of the
interior (I), boundary (B), and exterior (E) of geometries a and b. The dimension
of empty sets is equal to −1 or F (false). The dimension of non-empty sets is
equal to the maximum number of dimensions of the intersection, specifically, 0
for points, 1 for lines, 2 for areas. Thus, the domain of the model is {0, 1, 2, F}.
A simplified version of dim(x) values is obtained by mapping the values {0, 1, 2}
to T (true), so using the boolean domain {T, F}. The supported spatial relations
of DE-9IM are formally described below:

Equals: Two geometries g1 and g2 are equal if the two geometries are topolog-
ically equal, that is if their interiors intersect and no part of the interior or
boundary of one geometry intersects the exterior of the other. Formally:

(I(g1)I(g2))∧ ¬(I(g1)E(g2))∧ ¬(B(g1)E(g2))∧ ¬(E(g1)I(g2))∧ ¬(E(g1)B(g2))

Disjoint: Two geometries g1 and g2 are disjoint if they have no point in common.
Formally:

¬(I(g1)I(g2)) ∧ ¬(I(g1)B(g2)) ∧ ¬(B(g1)I(g2)) ∧ ¬(B(g1)B(g2))

Touches: A geometry g1 touches(meets) a geometry g2 if they have at least one
boundary point in common, but no interior points. Formally:

(¬(I(g1)I(g2)) ∧ I(g1)B(g2))∨
(¬(I(g1)I(g2)) ∧ B(g1)I(g2)) ∨ (¬(I(g1)I(g2)) ∧ B(g1)B(g2))

Contains: A geometry g1 contains a geometry g2 if g2 lies in g1, and the interiors
intersect. Another definition is the following: g1 contains g2 if no points of g2
lie in the exterior of g1, and at least one point of the interior of g2 lies in the
interior of g1. It is the inverse of Within. Formally:

(I(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2))



412 T. Saveta et al.

Within: A geometry g1 is within (inside) geometry g2 if g1 lies in the interior
of g2. Within is the inverse of Contains.

Intersects: A geometry g1 intersects geometry g2 if they have at least one point
in common.

Covers: A geometry g1 covers geometry g2 if geometry g2 lies in g1. Other
definitions: “no points of g2 lie in the exterior of g1”, or “Every point of g2 is
a point of (the interior or boundary of) g1”. It is the inverse of CoveredBy.
Formally:

((I(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((I(g1)B(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((B(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((B(g1)B(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))

Covered By: A geometry g1 is covered by geometry g2 (extends Within) if
every point of g1 is a point of g2, and the interiors of the two geometries have
at least one point in common. Covered by is the inverse of Covers.

Crosses: A geometry g1 crosses geometry g2 if they share some but not all
interior points, and the dimension of the intersection of the two geometries is
less than that of at least one of the geometries.

Overlaps: A geometry g1 overlaps geometry g2 if the geometries share some,
but not all points in common, and the intersection has the same dimension
as the geometries themselves.

Contains, Within, 
Covers, CoveredBy

DisjointEquals

Intersects

Overlaps

Touches

Crosses

Fig. 1. Examples of DE-9IM topological relations for LineStrings

Examples of the DE-9IM relations for LineStrings and Polygons geometries
are shown in Figs. 1 and 2. Figure 1 presents the DE-9IM relations between



SPgen: A Benchmark Generator for Spatial Link Discovery Tools 413

LineStrings and Fig. 2 demonstrates the DE-9IM relations between LineStrings
and Polygons.

Disjoint

Intersects

Touches

Crosses

Contains, Within, 
Covers, CoveredBy

Fig. 2. Examples of DE-9IM topological relations for LineStrings and Polygons

4 Datasets

In this Section, we present the datasets we experimented with SPgen. Recall that
the generator is schema agnostic and can work, in general, with trajectories,
i.e., sequences of longitude, latitude pairs. We used two datasets generated from
TomTom3 and Spaten [18].

TomTom Data Generator: TomTom provides a Synthetic Trace Generator4

developed in the context of the H2020 HOBBIT Project, which facilitates the
creation of an arbitrary volume of data from statistical descriptions of vehicle
traffic. More specifically, it generates traces, with a trace being a list of (longi-
tude, latitude) pairs recorded by one device (phone, car, etc.) throughout one
day. The generator uses probability distributions for variables like start and
end locations of trips, their starting time or what is the device’s update fre-
quency. Using parameters sampled from such distributions, a map is then used
to find an appropriate route for the trip and successive points are generated at
a regular time interval with typical speeds for each road. TomTom’s ontology is
shown in Fig. 3. The main class is class Trace that contains one or more points

3 https://www.tomtom.com/en gr/.
4 https://git.project-hobbit.eu/filipe.teixeira/synthetic-trace-generator/

container registry.

https://www.tomtom.com/en_gr/
https://git.project-hobbit.eu/filipe.teixeira/synthetic-trace-generator/container_registry
https://git.project-hobbit.eu/filipe.teixeira/synthetic-trace-generator/container_registry


414 T. Saveta et al.

(class Point) which represents in its turn latitude, longitude pairs. Each point is
associated with a velocity (class Velocity), instances of which have properties
velocityMetric and velocityValue. A point also has attributes hasTimeStamp
that takes its values in class xsd:TimeStamp which designates the time an object
was at this specific point. For our benchmark we are only interested in the points
of a trace.

Fig. 3. TomTom schema

Spaten: Spatio-temporal and Textual Big Data Generator: Spaten [18]
is an open-source configurable spatio-temporal and textual dataset generator,
that can produce large volumes of data based on realistic user behavior. Spaten
extracts GPS traces from realistic routes utilizing Google Maps API, and com-
bines them with real POIs and relevant user comments crawled from TripAd-
visor. The injection of social properties extracted by existing Twitter graphs to
the generated data, along with further parameterization, leads to realistic Geo-
Social Network (GeoSN) datasets. Spaten publicly offered GB-size datasets with
millions of check-ins and GPS traces.5 We used the provided trajectories of each
user as our second dataset as it takes extremely long time and very powerful
computing infrastructure to generate such data - Spaten developers produced
those datasets in the period of 2 months. These trajectories consist of time-
stamps and longitude, latitude pairs (i.e., points) represented in CSV format
(Listing 1.1 shows an example). We transformed the given dataset into Turtle
format using the TomTom ontology before using it as input dataset in SPgen.
1 id 1 , timestamp 1 , Point 1
2 id 1 , timestamp 2 , Point 2
3 . . .
4 id 1 , timestamp n , Point n

Listing 1.1. Spaten Example Data

5 https://github.com/Thaleia-DimitraDoudali/Spaten.

https://github.com/Thaleia-DimitraDoudali/Spaten


SPgen: A Benchmark Generator for Spatial Link Discovery Tools 415

5 SPgen: A Link Discovery Benchmark Generator
for Spatial Data

5.1 Overview

In SPgen,6 we focus on relations that follow the DE-9IM (Dimensionally
Extended nine-Intersection Model) and determine whether the systems are able
to identify those relations between different instances. Each instance is either a
LineString or a Polygon. SPgen gets as input traces represented as LineStrings
and produces a source and a target dataset. The source dataset is identical to the
input traces but is expressed in the Well Known Text format (WKT),7 whereas
the target dataset consists of LineStrings or Polygons that are generated from
the source dataset in such a way that traces in the target dataset have a specific
topological DE-9IM relation with the traces of the source dataset.

In SPgen we propose a set of test cases whose objective is to test whether
link discovery systems for spatial data can identify whether a DE-9IM relation
holds between different geometries. SPgen implements all topological relations of
DE-9IM between LineStrings and Polygons in the two-dimensional space. The
gold standard is produced after the generation of the source and target using
RADON [8]. We discuss in Subsect. 5.4 why we opted for this solution. In the
next subsections we will describe SPgen in more detail.

5.2 SPgen Architecture

The architecture of SPgen is shown in Fig. 4. SPgen takes a sequence of traces as
input and a set of user-defined parameters such as the (a) number of instances to
retrieve from the input dataset, (b) percentage of points to keep for each input
trace,8 (c) geometry of the target dataset (note that the target dataset can be
either a LineString or a Polygon) and (d) the DE-9IM topological relation of
interest.

The input dataset is processed by the Initialization Module that reads the
user-defined parameters and retrieves the input traces by means of SPARQL
queries. The retrieved traces are passed to the Resource Generation Module to
generate the source dataset that transforms each retrieved trace to a LineString
represented in WKT format. This module interacts with the Resource Transfor-
mation Module that generates the target instances represented again in WKT;
the module implements the DE-9IM topological relations discussed in Sect. 5.3.
The relations are implemented as an extension9 of the JTS Topology Suite,10

6 https://github.com/hobbit-project/SpatialBenchmark.
7 WKT is a text markup language for representing vector geometry objects on a map,

spatial reference systems of spatial objects and transformations between spatial ref-
erence systems. WKT offers a compact machine and human readable representation
of geometric objects.

8 A trace with a possibly huge number of points cannot be processed by systems,
hence we would like to give the ability to developers to restrict the trace size.

9 https://github.com/jsaveta/jtsExtension.
10 http://svn.code.sf.net/p/jts-topo-suite/code/tags/Version 1.14/.

https://github.com/hobbit-project/SpatialBenchmark
https://github.com/jsaveta/jtsExtension
http://svn.code.sf.net/p/jts-topo-suite/code/tags/Version_1.14/


416 T. Saveta et al.

Fig. 4. SPgen architecture

a JAVA API that provides a core set of spatial data operations using an explicit
precision model and robust geometric algorithms.

The target dataset obtained from the Resource Transformation Module along
with the source dataset, is passed as input to RADON.

5.3 Test Cases

SPgen implements all topological relations of DE-9IM between LineStrings and
Polygons in the two-dimensional space. Due to space limitations, we only dis-
cuss the DE-9IM relation Disjoint for LineStrings, and the relation Within for
LineStrings and Polygons. Other relations are handled in a similar fashion. Our
algorithms are based on the idea of the minimum bounding box (bbox ) which is
an area defined by two longitudes (in the range −180 . . . 180) and two latitudes
(in the range −90 . . . 90), such that the resulting bounding box (included within
these coordinates) contains the geometry under study.

Disjoint (LineString/LineString): Given a LineString s, and the DE-9IM
Disjoint relation r, we produce a LineString t disjoint with s, as follows: first,
we compute the bounding box b(s) of s, and randomly define longitude, latitude
coordinates for a bounding box b(t) that does not intersect with b(s). In order
to find b(t), we find sufficiently large (or sufficiently small) coordinates for the
minimum (maximum) longitude or latitude coordinates. Second, we generate a
random LineString t with the same number of points as s that entirely falls
inside b(t), thereby guaranteeing disjointness between s and t.

In the case in which b(s) covers the entire plane (i.e., its longitude, latitude
coordinates have the maximum/minimum values), no b(t) can be defined. In
these cases, we break s into several smaller LineStrings, say s1; . . .; sk, and



SPgen: A Benchmark Generator for Spatial Link Discovery Tools 417

compute their corresponding bounding boxes b(s1); . . .; b(sk). Then, we use the
above process to identify a bounding box b(t) that does not intersect with any
of them and create a random target LineString as discussed earlier.

If, despite the partitioning of the bounding box b(s) of LineString s, no
appropriate t can be found, then we define a more fine-grained partition and
repeat the process which ends when an appropriate disjoint LineString t can be
found, or when each pair of consecutive points of s is a partition; if even this fine-
grained partition does not allow the definition of an appropriate bounding box,
then the original LineString covers the entire plane and no disjoint LineString
can be created.

Fig. 5. Example for disjoint (LineString/LineString)

Figure 5 provides an example of the aforementioned process. In subfigure
(a) we can see the source LineString s and its bbox b(s). We are in the case
where b(s) covers the entire plane, thus we break s into smaller LineStrings and
compute their corresponding bounding boxes b(s1); b(s2); b(s3) (subfigure (b)).
We do not need to break s more as there is already an empty space where we can
generate a bbox b(t) and generate a disjoint to s, target LineString t (subfigure
(c)).

Within (LineString/Polygon): Given a LineString s, and DE-9IM Within
relation r, we produce a Polygon t in which s is within, as follows: First, using
the JTS API we find the minimum-area convex polygon that contains LineString
s. Then, we slightly expand the returned Polygon in order not to cross LineString
s and thus we create target Polygon t. In the rare case in which s has one or
more points whose longitudes are equal to −180 or 180 or one or more points
whose longitudes are equal to −90 or 90, no Polygon that contains s exists.
Figure 6 provides an example of the aforementioned process. In subfigure (a) we
can see the source LineString s and its bbox b(s) that does not cover the entire
plane. Thus, we are able to define a Polygon that contains s (subfigure (b)) and
then slightly expand it in order to create a Polygon t that in combination with
s follows the definition of DE-9IM Within relation (subfigure (c)).



418 T. Saveta et al.

Fig. 6. Example for within (LineString/Polygon)

5.4 Gold Standard

The gold standard produced by SPgen is not created during the generation of
the target dataset, since it would not be complete: in order to compute the gold
standard, we would have to check each generated target LineString or Polygon
against all source LineStrings, a process that essentially amounts to implement-
ing a system for the computation of the topological relations. Thus, to compute
the gold standard, we resorted to an appropriate implemented system, namely
RADON [8].

RADON was selected because it is a novel approach for rapid discovery of
topological relations among geo-spatial resources. It combines space tiling, min-
imum bounding box approximation and a sparse index to handle very large
datasets. RADON was evaluated with real datasets of various sizes and showed
that in addition to being complete and correct, it also outperforms the state of
the art spatial link discovery systems by up to three orders of magnitude. Thus,
it is appropriate for our purposes.

5.5 Key Performance Indicators

The key performance indicators of a benchmark determine the effectiveness and
efficiency of the systems and tools. In SPgen we focus on the output quality in
terms of standard metrics such as precision, recall and f-measure [19]. We also
aim to quantify the time performance of the systems measuring the time needed
by the link discovery system to return results.

6 Experimental Results

In this section we describe the experiments we conducted in order to show how
well the various spatial linking systems performed regarding output quality and
time performance for datasets of various sizes and for the different DE-9IM
topological relations.

Datasets & Tasks: We ran experiments for all the DE-9IM relations and
for LineString/LineString and LineString/Polygon cases for both TomTom and



SPgen: A Benchmark Generator for Spatial Link Discovery Tools 419

Spaten datasets ranging from 200 to 2K instances, not exceeding 64 KB per
instance due to a limitation of SILK.11 This is important in order to get a fair
comparison for the systems under test. We report here the results for quality
output and time performance for all systems.

Experimental Setup: All the experiments were executed using the HOB-
BIT Platform12 where SPgen is integrated and the platform time limit was set
to 75 min. Thus, we provide a comparative analysis with benchmarks produced
using SPgen and were able to assess and identify the capabilities of four systems,
namely AgreementMakerLight (AML), OntoIdea, Rapid Discovery of Topologi-
cal Relations (RADON) and Silk.

Tasks: We divided the experiments into four tasks. In the first two tasks (SLL
and LLL), the systems were asked to match LineStrings to LineStrings consid-
ering a given relation for 200 and 2K instances for the TomTom and Spaten
datasets. In the last two second tasks (SLP, LLP), the systems were asked to
match LineStrings to Polygons (or Polygons to LineStrings depending on the
relation) again for both datasets. We are only presenting results regarding the
time performance and not precision, recall and f-measure as all results from all
systems were equal to 1.0 except for OntoIdea (mostly for the Spaten dataset)
that were between 0.91 to 0.99.

Task SLL: Small (LineStrings/LineStrings): Fig. 7 presents the time
performance for TomTom and Spaten datasets for AML, OntoIdea, Silk and
RADON systems for 200 instances. RADON has the best performance in most
cases except Touches and Instersects relations, followed by AML and OntoIdea,
while Silk seems to need the most time mainly for the TomTom dataset for
Touches and Intersects relations and for both datasets for Overlaps.

Task LLL: Large (LineStrings/LineStrings): Figure 8 presents the time
performance for TomTom and Spaten datasets for AML, OntoIdea, Silk and
RADON systems for the 2K instances dataset. In contrast to Fig. 7 we have a
more clear view of the capabilities of the systems. In this experiment, RADON
and Silk have similar behaviour as in the case of the small dataset, but this time
it is more clear that the systems need much more time to match instances from
the TomTom dataset. RADON has still the best performance in most cases.
AML has the next best performance and is able to handle cases better than
other systems (e.g. Touches and Intersects). AML also hits the platform time
limit in the case of Disjoint. While the time performance of OntoIdea was close
to RADON and AML in the smaller dataset, AML is not able to handle the
larger dataset.

Task SLP: Small (LineStrings/Polygons): Figure 9 presents the time per-
formance for TomTom and Spaten datasets for AML, Silk and RADON for 200
instances (LineStrings/Polygons or Polygons/LineStrings depending on the rela-
tion). In contrast to the two first tasks, RADON has the best performance for
11 https://github.com/silk-framework/silk/issues/57.
12 http://master.project-hobbit.eu.

https://github.com/silk-framework/silk/issues/57
http://master.project-hobbit.eu


420 T. Saveta et al.

Fig. 7. Time performance for TomTom & Spaten SLL Task for AML(A), OntoIdea(O),
Silk(S) and RADON(R) systems

Fig. 8. Time performance for TomTom & Spaten LLL Task and for AML(A),
OntoIdea(O), Silk(S) and RADON(R) systems

all relations. AML and Silk have minor time differences and, depending on the
case, one is slightly better than the other. All the systems need more time for the
TomTom dataset but due to the small size of the instances the time difference
is minor.

Task LLP: Large (LineStrings/Polygons): Figure 10 presents the time
performance for TomTom and Spaten datasets for AML, Silk and RADON for
the 2K instance dataset (LineStrings/Polygons or Polygons/LineStrings depend-
ing on the relation). RADON again has the best performance in all cases. AML
hits the platform time limit in Disjoint relations on both datasets and is better
than Silk in most cases except Contains and Within on the TomTom dataset
where it needs an excessive amount of time.



SPgen: A Benchmark Generator for Spatial Link Discovery Tools 421

Fig. 9. Time performance for TomTom & Spaten SLP Task and for AML(A), Silk(S)
and RADON(R) systems

Fig. 10. Time performance for TomTom & Spaten LLP Task and for AML(A), Silk(S)
and RADON(R) systems

Discussion

Taking into account the executed experiments we can identify the capabilities
of the tested systems as well as suggest some improvements. All the systems
participated in most of the test cases except OntoIdea that did not participate
in Tasks SLP and LLP and in experiments for the Disjoint relation. Also Silk
did not participate in Covers and Covered By experiments.

RADON is the only system that addressed all the tasks, while it can be
improved for the Touches and Intersects relations for the Tasks SLL and LLL
and it also has the best performance for the SLP and LLP tasks. AML performs
extremely well in most cases. It can be improved in the cases of Covers/Covered
By and Contains/Within when it comes to LineStrings/Polygons Tasks and also
in Disjoint relations where it hits the platform time limit. Silk can be improved



422 T. Saveta et al.

for the Touches, Intersects and Overlaps relations and for the SLL and LLL tasks
and for the Disjoint relation in SLP and LLP Tasks. OntoIdea can handle small
datasets efficiently, but its performance deteriorates when it comes to larger
datasets.

In general, all systems needed more time to match the TomTom dataset
than the Spaten one, due to the smaller number of points per instance in the
latter. Comparing the LineString/LineString to the LineString/Polygon Tasks
we can say that all the systems needed less time for the first in Contains, Within,
Covers and Covered by relations, more time for the Touches, Instersects and
Crosses relations, and approximately the same time for the Disjoint relation.
Thus, depending on the test case we can choose the appropriate system.

7 Conclusions and Future Work

In this paper we presented SPgen, a Spatial Benchmark Generator that checks
whether spatial link discovery systems can identify DE-9IM (Dimensionally
Extended nine-Intersection Model) topological relations between LineStrings and
Polygons. To the best of our knowledge, such benchmarks do not exist while the
number of spatial link discovery systems that identify links for spatial datasets
are limited. We evaluated four systems (AML, OntoIdea, RADON and Silk)
using SPgen to assess and identify their capabilities. In future work, we aim to
implement DE-9IM relations for all possible combinations of different geometries
(Polygons/Polygons, combination with Points, LineStrings and Polygons, etc.).
In addition, we plan to add more data generators in order to test SPgen for
different use cases.

Acknowledgments. The work presented in this paper was funded by the H2020
project HOBBIT (#688227).

References

1. Ngonga Ngomo, A.-C.: On link discovery using a hybrid approach. J. Data Semant.
1(4), 203–217 (2012)

2. Saveta, T., Daskalaki, E., Flouris, G., Fundulaki, I., Herschel, M., Ngonga Ngomo,
A.-C.: Pushing the limits of instance matching systems: a semantics-aware bench-
mark for linked data. In: WWW, pp. 105–106. ACM (2015). Poster

3. Strobl, C.: Dimensionally extended nine-intersection model (DE-9IM). In: Shekhar,
S., Xiong, H., Zhou, X. (eds.) Encyclopedia of GIS, pp. 240–245. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-17885-1

4. Boncz, P., Neumann, T., Erling, O.: TPC-H analyzed: hidden messages and lessons
learned from an influential benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC
2013. LNCS, vol. 8391, pp. 61–76. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-04936-6 5

5. Cruz, I.F., Antonelli, F.P., Stroe, C.: AgreementMaker: efficient matching for large
real-world schemas and ontologies. VLDB Endow. 2(2), 1586–1589 (2009)

https://doi.org/10.1007/978-3-319-17885-1
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5


SPgen: A Benchmark Generator for Spatial Link Discovery Tools 423

6. Cruz, I.F., et al.: Using agreementmaker to align ontologies for OAEI2011, vol.
814, pp. 114–121 (2011)

7. Khiat, A., Mackeprang, M.: I-Match and OntoIdea results for OAEI 2017. In: OM,
p. 135 (2017)

8. Sherif, M.-A., Dreßler, K., Smeros, P., Ngonga Ngomo, A.-C.: RADON - rapid
discovery of topological relations. In: AAAI (2017)

9. Smeros, P., Koubarakis, M.: Discovering spatial and temporal links among RDF
data. In: LDOW (2016)

10. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospa-
tial RDF stores (long version). In: Alani, H., et al. (eds.) ISWC 2013. LNCS,
vol. 8219, pp. 343–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41338-4 22

11. Ray, S., Simion, B., Brown, A.D.: Jackpine: a benchmark to evaluate spatial
database performance. In: ICDE, pp. 1139–1150. IEEE (2011)

12. Kolas, D.: A benchmark for spatial semantic web systems. In: SSWS (2008)
13. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.

Web Semant.: Sci. Serv. Agents World Wide Web 3(2–3), 158–182 (2005)
14. Paton, N.W., Williams, M.H., Dietrich, K., Liew, O., Dinn, A., Patrick, A.: VESPA:

a benchmark for vector spatial databases. In: Lings, B., Jeffery, K. (eds.) BNCOD
2000. LNCS, vol. 1832, pp. 81–101. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45033-5 7

15. Gunther, O., Oria, V., Picouet, P., Saglio, J.M., Scholl, M.: Benchmarking spatial
joins a la carte. In: SSDM, pp. 32–41. IEEE (1998)

16. Stonebraker, M., Frew, J., Gardels, K., Meredith, J.: The Sequoia 2000 storage
benchmark. In: ACM SIGMOD Record, vol. 22, pp. 2–11. ACM (1993)

17. Patel, J., et al.: Building a scaleable geo-spatial DBMS: technology, implemen-
tation, and evaluation. In: ACM SIGMOD Record, vol. 26, pp. 336–347. ACM
(1997)

18. Doudali, T.D., Konstantinou, I., Koziris, N.: Spaten: a spatio-temporal and textual
big data generator. In: IEEE Big Data, pp. 3416–3421 (2017)

19. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F -score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1 25

https://doi.org/10.1007/978-3-642-41338-4_22
https://doi.org/10.1007/978-3-642-41338-4_22
https://doi.org/10.1007/3-540-45033-5_7
https://doi.org/10.1007/3-540-45033-5_7
https://doi.org/10.1007/978-3-540-31865-1_25

	SPgen: A Benchmark Generator for Spatial Link Discovery Tools
	1 Introduction
	2 Related Work
	3 Dimensionally Extended Nine-Intersection Model (DE-9IM)
	4 Datasets
	5 SPgen: A Link Discovery Benchmark Generator for Spatial Data
	5.1 Overview
	5.2 SPgen Architecture
	5.3 Test Cases
	5.4 Gold Standard
	5.5 Key Performance Indicators

	6 Experimental Results
	7 Conclusions and Future Work
	References




