
Semantics and Validation
of Recursive SHACL

Julien Corman1, Juan L. Reutter2(B), and Ognjen Savković1

1 Free University of Bozen-Bolzano, Bolzano, Italy
2 PUC Chile and IMFD Chile, Santiago, Chile

jreutter@ing.puc.cl

Abstract. With the popularity of RDF as an independent data model
came the need for specifying constraints on RDF graphs, and for mech-
anisms to detect violations of such constraints. One of the most promis-
ing schema languages for RDF is SHACL, a recent W3C recommenda-
tion. Unfortunately, the specification of SHACL leaves open the problem
of validation against recursive constraints. This omission is important
because SHACL by design favors constraints that reference other ones,
which in practice may easily yield reference cycles.

In this paper, we propose a concise formal semantics for the so-called
“core constraint components” of SHACL. This semantics handles arbi-
trary recursion, while being compliant with the current standard. Graph
validation is based on the existence of an assignment of SHACL “shapes”
to nodes in the graph under validation, stating which shapes are veri-
fied or violated, while verifying the targets of the validation process. We
show in particular that the design of SHACL forces us to consider cases in
which these assignments are partial, or, in other words, where the truth
value of a constraint at some nodes of a graph may be left unknown.

Dealing with recursion also comes at a price, as validating an RDF
graph against SHACL constraints is NP-hard in the size of the graph,
and this lower bound still holds for constraints with stratified negation.
Therefore we also propose a tractable approximation to the validation
problem.

1 Introduction

The success of RDF was largely due the fact that it can be easily published and
queried without bounding to a specific schema [4]. But RDF over time has turned
into more than a simple data exchange format [2], and a key challenge for current
RDF-based applications is checking quality (correctness and completeness) of a
dataset. Several systems already provide facilities for RDF validation (see e.g.
[12]), including commercial products.1,2 This created a need for standardizing a
declarative language for RDF constraints, and for formal mechanisms to detect
and describe violations of such constraints.
1 https://www.topquadrant.com/technology/shacl/.
2 https://www.stardog.com/docs/.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 318–336, 2018.
https://doi.org/10.1007/978-3-030-00671-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_19&domain=pdf
https://www.topquadrant.com/technology/shacl/
https://www.stardog.com/docs/

Semantics and Validation of Recursive SHACL 319

Fig. 1. Two SHACL shapes, about Polentoni and addresses in Northern Italy

One of the most promising efforts in this direction is SHACL, or Shapes Con-
straint Language,3 which has become a W3C recommendation in 2017. SHACL
groups constraints in so-called “shapes” to be verified by certain nodes of the
graph under validation, and such that shapes may reference each other.

Figure 1 presents two SHACL shapes. The leftmost, named :NIAddressShape,
is meant to define valid addresses in Northern Italy, whereas the right one, named
:PolentoneShape, defines northern Italians, stereotypically referred to as Polen-
toni.4 A node v satisfying the first shape must verify two constraints: the first
one states that there can be at most one successor of v via property :telephone.
The second one states that there must be exactly one successor (sh:minCount 1

and sh:maxCount 1) of v via property :locatedIn, with value :NorthernItaly.
Validating an RDF graph against a set of shapes is based on the notion

of “target nodes”, which mandates for each shape which nodes have to con-
form to it. For instance, PolentoneShape contains the triple :PolentoneShape

sh:targetClass :Polentone, stating that its targets are all instances of
:Polentone in the graph under validation. But nodes may also have to conform
to additional shapes, due to shape references. For instance, in Fig. 1, the shape
to the right contains one (non-recursive) shape reference, to :NIAddressShape,
stating that every node v conforming to :PolentoneShape must have exactly one
:address, which must conform to :NIAddressShape, and one recursive reference,
stating that each successor of v via :knows must conform to :PolentoneShape.

By recursion, we will always refer to such reference cycles, possibly n-ary
(where shape s1 references s2, s2 references s3,.., sn references s1). Unfortu-
nately, the semantics of graph validation with recursive shapes is left explicitly
undefined in the SHACL specification: “... the validation with recursive shapes
is not defined in SHACL and is left to SHACL processor implementations. For
example, SHACL processors may support recursion scenarios or produce a failure

3 https://www.w3.org/TR/shacl/.
4 This example is borrowed from Peter Patel-Schneider: https://research.nuance.com/
wp-content/uploads/2017/03/shacl.pdf.

https://www.w3.org/TR/shacl/
https://research.nuance.com/wp-content/uploads/2017/03/shacl.pdf
https://research.nuance.com/wp-content/uploads/2017/03/shacl.pdf

320 J. Corman et al.

when they detect recursion.” The specification nonetheless expresses the expec-
tation that validation of recursive shapes end up being defined in future work.
Indeed, shapes references are a core feature of SHACL. Furthermore, in a Seman-
tic Web context, where shapes are expected to be exchanged or reused, reference
cycles may naturally appear, intentional or not. Finally, recursion may be viewed
as one of the distinctive features of SHACL: without recursion, one ends up with
a constraint language whose expressive power is essentially the same as SPARQL.

Another current limitation of the SHACL specification is the lack of a uni-
fied and concise formal semantics for the so-called “core constraint components”
of the language. Instead, the specification provides a combination of SPARQL
queries and textual definitions to characterize these operators. This may be
sufficient for reading or writing SHACL constraints, but a more abstract under-
lying formalization is still missing, in order for instance to devise efficient con-
straint validation algorithms, identify computational bottlenecks, or to compare
SHACL’s expressivity with other languages.

Contributions. In this article, we propose a formal semantics for the core con-
straint components of SHACL, which is robust enough to handle arbitrary recur-
sion, while being compliant with the current standard in the non-recursive case.
It turns out that defining such a semantics is far from trivial, due essentially to
the combination of three features of the language: recursion, arbitrary negation,
and the target-based validation mechanism introduced above. One of the main
difficulties is to define in a satisfactory way validation of shapes with so-called
non-stratified constraints, where negation is used arbitrarily in reference cycles.

To do this, we base our semantic on the existence of a partial assignment
of shapes to nodes that verifies both constraints and targets, i.e. intuitively
a validation of nodes against shapes which may leave undetermined whether
a given node verifies a shape or violates it. We show that this semantics has
desirable formal properties, such as equivalence with classical validation in the
presence of stratified constraints.

Recursion, however, comes at a cost, as we show that the problem of vali-
dating a graph is worst-case intractable in the size of the graph. Perhaps more
surprisingly, we show that this property already holds for stratified constraints,
and for a limited fragment of the language, without counting or path expressions.
This observation leads us to propose a sound approximation, polynomial in the
size of the graph, and whose worst-case execution time can be parameterized.

Organization. Section 2 discusses the problem of recursive SHACL constraints
validation, with concrete examples. Then Sect. 3 defines a robust semantics for
SHACL, together with a concise abstract syntax, and investigates its formal
properties. Section 4 studies computational complexity of the graph validation
problem under this semantics, and Sect. 5 proposes a sound approximation algo-
rithm, in order to regain tractability (in the size of the graph under validation).
Finally, Sect. 6 reviews alternative languages and formal semantics for graph
constraints validation, with an emphasis on RDF.

Semantics and Validation of Recursive SHACL 321

An extended abstract of this paper has been accepted at the AMW work-
shop [9]. In addition, an appendix with detailed proofs and a translation from
SHACL into our abstract syntax and conversely can be found at [8].

2 Validating a Graph Against SHACL Shapes

This section provides a brief overview of the constraint validation mechanism
described in the SHACL specification, and discusses its extension to the case
of recursive constraints. We focus here on the problem of deciding whether a
graph is valid against a set of shapes. Therefore we purposely ignore the notion
of “validation report” defined in the specification, and encourage the interested
reader to consult the specification directly.

Checking whether a graph G is valid against a set S of shapes may be viewed
as a two-step process. The first step consists in iterating over all shapes s ∈ S,
and retrieve their respective target nodes in G. SHACL provides a dedicated lan-
guage to describe the intended targets of a shape (e.g. the sh:targetClass prop-
erty in Fig. 1), which is orthogonal to the language used to define constraints.
Furthermore, this language has a limited expressivity, allowing all targets of
shape s in G to be retrieved in O(|G| · log |G|), before constraint validation.

Fig. 2. A SHACL shapes for semi-Polentone, and a graph G to be validated against
this shape, together with the shapes of Fig. 1

The second step consists in iterating over each target node v of each shape
s, and check whether the node v satisfies s. This check can be represented as a
call to a recursive function validates(s,G, v). Some of the constraints for s may
be validated by looking locally at the graph, i.e. at the IRI of v and its outgoing
paths. But validates(s,G, v) may also trigger a recursive call validates(s′, G, v′),
where s′ is a shape referenced by s, and v′ is a successor of v in G. It should be
noted that v′ does not need to be a target node of s′. In turn, validates(s′, G, v′)
may trigger another recursive call, etc.

322 J. Corman et al.

Another important feature of SHACL is the possibility to declare negated
constraints. For instance, shape SemiPolentoneShape in Fig. 2 uses sh:not to
describe someone who knows at least one person who is not a Polentone (but
still lives in Northern Italy). In this case, validates(SemiPolentoneShape, G, v) will
succeed only if some successor of v via property :knows violates the constraints
for :PolentoneShape.5

2.1 Recursive Constraints with Stratified Negation

Figures 1 and 2, considered together, illustrate a simple case of recursive
constraint validation (i.e. constraints with reference cycles). The RDF triple
:SemiPolentoneShape sh:targetNode :Enrico indicates that :Enrico is the unique
target of shape :SemiPolentoneShape. This is also the only target to be validated
in the graph.

To check if :Enrico validates :SemiPolentoneShape, the validation pro-
cess described in the specification would call validates(SemiPolentoneShape, G,
:Enrico), triggering an infinite sequence of recursive calls to
validates(PolentoneShape, G, :Davide). Intuitively, the problems is that validates
does not keep track of what has been validated (or violated) so far.

A classical solution to ground constraint evaluation in such cases is to define
it w.r.t. an assignment of (positive and negated) shape labels to nodes. In
this example, Enrico can be assigned :SemiPolentoneShape, and :Davide can be
assigned the negation of :PolentoneShape. This assignment complies with the
constraints and the target, allowing us to validate the graph. Alternatively, it is
possible to comply with all constraints by assigning :PolentoneShape to :Davide,
and the negation of :SemiPolentoneShape to :Enrico. But this latter assignment
does not comply with the target, therefore it would not allow us to validate the
graph.

Fig. 3. Two SHACL shapes which illustrates the need for partial assignments

Several formal frameworks dealing with recursion (such as recursive Datalog
[10]) have semantics based on a similar intuition. This notion of assignment is
5 Constraints on node sucessors in SHACL are by default universally quantified. This
is why sh:not here requires one successor violating :PolentoneShape to exist.

Semantics and Validation of Recursive SHACL 323

also used in [7] for ShEx, a constraint language for RDF very similar to SHACL.
However, the semantics proposed in [7] would consider the graph of Fig. 2 as
invalid, taking only one assignment into consideration, where :Davide is assigned
:PolentoneShape, and therefore :Enrico cannot verify :SemiPolentoneShape. The
semantics defined in [7] is also restricted to stratified constraints, i.e. constraints
such that reference cycles have no reference in the scope of a negation (see
Definition 8 further below).

2.2 Non-stratified Constraints

Extending assignment-based validation to the non-stratified case raises an inter-
esting question, namely whether such an assignment should be total, i.e. assign
each shape or its negation to each node of the graph. We illustrate this with
validating the graph G of Fig. 2 against the two shapes of Fig. 3.

:Davide is the only target node, for shape :HappyPersonShape. This shape
is validated iff :Davide has an address, or knows a naive polentone. Because
:Davide has an address, a simple call to validates(HappyPersonShape, G, :Davide)
would validate the graph. But a total assignment must also assign either
:NaivePolentoneShape or its negation to :Davide. And this cannot be done in
a consistent manner. If :NaivePolentoneShape is assigned, then :Davide does not
verify the corresponding constraint; if the negation of :NaivePolentoneShape is
assigned, then :Davide does not violate the constraint. Therefore a semantics
based on total assignments would consider the graph invalid.

It should be emphasized that this example is not a limit case: the same
problem appears for any (satisfiable) set of shapes containing a reference cycle
(of any size), and such that an odd number of references in this cycle are in the
scope of a negation. Therefore, if one wants to defines a robust semantics based
on assignments for recursive SHACL, it should be based on partial assignments,
leaving the possibility to assign neither a shape nor its negation to some nodes.

3 Formal Semantics for SHACL

This section provides a formal semantics for recursive SHACL. As explained
above, constraint validation is based on partial assignment. This semantics
(i) complies with the current semantics of SHACL for non-recursive constraints,
(ii) supports arbitrary recursion and negation, and (iii) can handle simultaneous
validation of multiple targets.

A set of shapes is validated iff there exists an assignment (called here faithful)
complying with it. This is a key difference from query answering, or cautious rea-
soning in Datalog, interested in certain answers, i.e. holding for all valid assign-
ments. For instance, in Fig. 2, some faithful assignments assign :PolentoneShape

to :Davide, and some do not.

324 J. Corman et al.

3.1 Notation

Like the SHACL specification, we borrow from SPARQL the notion of property
path, which describes regular constraints holding over a path in a graph (for the
syntax and semantics, we defer to the SPARQL standard [15]). Following [16],
if r is a property path and G a graph, we denote with r(G) the evaluation of r,
which consists of all pairs (v, v′) of nodes in G such that there is a path from v
to v′ satisfying r.

Similarly, if ψ is a SPARQL query, we denote with ψ(G) the evaluation of ψ
in G. Finally, we use |X| to denote the size of structure X.

3.2 Abstract Syntax and Semantics for SHACL Constraints

Syntax. As usual, we find more convenient to work with a logical abstrac-
tion of the concrete SHACL language. Our abstraction uses a fragment of first
order logic to simulate node shapes, and then unravels so-called SHACL “prop-
erty shapes” as modal formulas over nodes. Like the SHACL specification, we
make the unique name assumption, i.e. we assume that two blank nodes in an
RDF graph cannot denote the same individual. We also abstract away from
constraints on IRIs and literals (regular expression, datatype, value compari-
son, etc.), and use a simple constant I instead. Constraints are defined by the
following grammar:

φ ::= � | s | I | φ1 ∧ φ2 | ¬φ | ≥n r.φ | EQ(r1, r2)

where s is a shape name, I is an IRI, r is a property path, and n ∈ N
+. As

syntactic sugar, we use ≤n r.φ for ¬(≥n+1 r.φ), and =n r.φ for (≥n r.φ) ∧
(≤n r.φ).

Let L be the language defined by this grammar. A full operator-by-operator
translation from SHACL core constraint components to L and conversely is
provided in the online appendix [8] of this article. For non-recursive shape con-
straints, this is a correct translation, in the sense that a set of constraints in
one language and its translation in the other language validate exactly the same
graphs, given the same targets. Unfortunately, in the absence of formal semantics
for SHACL, this claim cannot be formally proven, but is based on our under-
standing of the specification. We cannot claim that this also holds for recursive
shapes though, because SHACL validation in this case is not defined.

Example 1. We illustrate the syntax with the example from Fig. 1. To express
SHACL cardinality constraints (e.g. sh:maxCount), we use ≤1 r.φ, which means
that a node can have at most 1 r-successor satisfying φ, or =1 r.φ for exactly
one. Then the constraints for :NIAddressShape (abbreviated here as sniaddr) can
be translated as:

(≤1 telephone.�) ∧ (=1 locatedIn.NorthernItaly)

where � is true at every node. In the same way, we can translate the constraints
for :PolentoneShape (abbreviated here as spol). Both sniaddr and spol appear

Semantics and Validation of Recursive SHACL 325

in the constraint for spol. This mimics the SHACL syntax, where both shapes
were mentioned:

(≤0 knows.¬spol) ∧ (=1 address.sniaddr)

Semantics. Because shape names may appear in constraint formulas, we define
the inductive evaluation of a formula in terms of a node, a graph, and an assign-
ment that mandates which shapes are true or false at each node.

Definition 1 (Assignment). Let N be a set of shape names, and G a graph.
An assignment σ for G and N is a total function mapping nodes in G to subsets
of N ∪ {¬s | s ∈ N}, such that s and ¬s cannot be both in σ(v).

Definition 2 (Total assignment). A assignment σ for G and N is total if
either s ∈ σ(v) or ¬s ∈ σ(v), for each node in G and s ∈ N .

The evaluation �φ�v,G,σ of formula φ at node v in graph G given σ is defined
in Table 1. In order to evaluate a formula given a partial assignment, we use a
3-valued logic, which, in addition to the usual 1 and 0 for true and false, uses
0.5 to represent an unknown truth value. But if assignments are required to be
total, then this third value is not needed:

Observation 1. Let σ be a total assignment for G and N , and φ a constraint
formula using shape names in N . Then for each node v of G, either �φ�v,G,σ = 0
or �φ�v,G,σ = 1.

The inductive definition of �φ�v,G,σ is standard, aside maybe for the operator
≥n r. Intuitively, ≥n r.φ evaluates to true iff at least n r-successors of v validate
φ, whereas ≥n r.φ evaluates to false iff the number of r-successors of v which do
or could validate φ is strictly inferior to n. This allows the semantics to comply
with SHACL cardinality constraints in the non-recursive case.

From SHACL Shapes to L Constraints. We model a shape as a triple
(s, φs, targets), where s is a shape name, φs is a constraint in L, and targets

is a (possibly empty) monadic query retrieving the target nodes of s. If S is a
set of shapes, we assume that for each (s, φs, targets) ∈ S, if s′ appears in φs,
then (s′, φ′

s, target′
s) ∈ S. An assignment for G and S is an assignment for G

and {s | (s, φs, targets) ∈ S}. Abusing notation, we write “s ∈ S” instead of
“(s, φs, targets) ∈ S”.

3.3 Validation

We finally have all components in place to define graph validation. Intuitively,
a graph is valid against a set S of shapes if one can find an assignment σ for
G and S complying with targets and constraints. We call such an assignment
faithful, defined as follows:

326 J. Corman et al.

Table 1. Inductive evaluation of constraint formula φ at node v in graph G given
assignment σ

Definition 3 (Faithful Assignment). A assignment σ for G and S is faithful
iff targets(G) ⊆ σ(v) for each (s, φs, targets) ∈ S, and, for each node v in G:

– if s ∈ σ(v), then �φs�
v,G,σ = 1

– if ¬s ∈ σ(v), then �φs�
v,G,σ = 0

Definition 4 (Validation). A graph G is valid against a set S of shapes iff
there is a faithful assignment σ for G and S.

The (online) appendix provides a full translation from SHACL to sets of
shapes and conversely, which preserves validation, provided the shapes are non-
recursive (i.e. contain no reference cycle). Our notion of validation is more robust
though, as it is also well-defined for recursive shapes. In Sect. 4, we study the
complexity of the validation problem. But for now, we provide some insight on
properties of this semantics.

3.4 Properties of Validation

We introduce some additional notation. First, ΣG,S will designate the set of all
assignments for G and S. Then we define the “immediate evaluation” operator
TG,S for G and S (or simply T when obvious from the context). It takes an
assignment σ, and returns the assignment T(σ) obtained by evaluating each φs

at each node of G.

Definition 5 (Immediate evaluation operator T).
T : ΣG,S → ΣG,S is the function defined by
s ∈ (T(σ))(v) iff �φs�

v,G,σ = 1, and ¬s ∈ (T(σ))(v) iff s ∈ �φs�
v,G,σ = 0

Semantics and Validation of Recursive SHACL 327

Finally, we define the preorder
 over ΣG,S by:

Definition 6 (Preorder
).
σ1
 σ2 iff σ1(v) ⊆ σ2(v) for each node v in G.

Validation Without Target. The SHACL specification states that a graph G
is valid against a set S of shapes if no shape in s has target in G. From Defini-
tions 3 and 4, this also (trivially) holds in the recursive case for our semantics.
Somehow surprisingly, validation without target may fail for total assignments.
For instance, there is no total faithful assignment for the graph of Fig. 2 and the
set of shapes containing only shape :NaivePolentoneShape from Fig. 3.

A Stricter Notion of Faithfulness. From Definition 3, a faithful assignment
σ is only required to assign s to a node v if φs is verified by v (given σ), and to
assign ¬s to v if φs is violated by v (given σ). But it is also possible to assign
none of these two, even though v verifies of violates φs (given σ). This may seem
counterintuitive, which leads to the following stricter notion of faithfulness:

Definition 7 (Strictly-faithful assignment). A assignment σ for G and S
is strictly faithful iff targets(G) ⊆ σ(v) for each (s, φs, targets) ∈ S, and, for
each node v in G:

– if s ∈ σ(v), then �φs�
v,G,σ = 1

– if ¬s ∈ σ(v), then �φs�
v,G,σ = 0

– otherwise, �φs�
v,G,σ = 0.5.

We also say that a graph G is strictly valid against a set of shapes S if there is
a strictly faithful assignment for G and S.

For instance, there is only one strictly faithful assignment for the graph of in
Fig. 2 and the two shapes of Fig. 3. It assigns ¬:HappyPersonShape to :addr1,
because :addr1 violates the constraint for this shape. There are also several (non-
strictly) faithful assignments, some of which assign neither :HappyPersonShape

nor its negation to :addr1. So intuitively, non-strict validation allows some form
of “lazy” constraint evaluation.

The operator T provides a more concise definition. Both faithful and strictly
faithful assignments must comply with targets for G and S. But in addition, a
faithful assignment σ must verify σ
 T(σ), whereas a strictly faithful assign-
ment σ′ must verify σ′ = T(σ′).

Interestingly, these two notions of validation coincide. To prove this, we first
need a useful property, the monotonicity of T w.r.t
:

Lemma 1 (monotonicity of T). For any G, S and σ1, σ2 ∈ ΣG,S:
if σ1
 σ2, then T(σ1)
 T(σ2).

We can now state the equivalence:

Proposition 1. For any G and S, G is valid against S iff G is strictly valid
against S.

328 J. Corman et al.

Proof (Sketch). The right direction is trivial, because a strictly faithful assign-
ment is faithful. In the other direction, let σ0 be a faithful assignment for G
and S. Define Σ′ ⊆ ΣG,S as all extensions of σ0, i.e. σ′ ∈ Σ′ iff σ0
 σ′. From
Lemma 1, T(σ0)
 T(σ′). And because σ0 is faithful, σ0
 T(σ). Therefore
σ0
 T(σ′), i.e. T(σ′) ∈ Σ′.

Now consider the (meet) semi-lattice 〈Σ′,
〉 rooted in σ0. We just showed
that for each σ′ ∈ Σ′, T(σ′) ∈ Σ′. In addition, from Lemma1, T is monotone
over 〈Σ′,
〉. So from a (weaker version of) the Knaster-Tarski Theorem, T
admits a fixed-point σ2 over Σ′. And because σ0
 σ2, σ2 complies with all
targets for G and S. Therefore σ2 is strictly faithful for G and S.
�

All We Need Is One Target. The following explains why the complexity
results provided in Sect. 4 only consider graph validation with a single target
node.

Proposition 2. Given a graph G, set S of shapes and target nodes in G for
each s ∈ S, one can construct in linear time a graph G′ and set S′ of shapes,
such that G is valid against S iff G′ is valid against S′, and S′ has a single target
in G′.

Proof. (Sketch). Let s1, .., sn be the shapes in S, with respective targets
v1
1 , .., v

m1
1 , .., v1n, .., vmn

n . Extend G with a fresh node v0, and an edge (vo, e
j
i , v

j
i)

for each vj
i , with ej

i a fresh edge label. Then delete all target expressions in
S, and extend S with a fresh shape s0, with target node v0, and constraint
φs0

.= (≥1 em1
1 .�) ∧ ∧ (≥1 emn

1 .�).
�

3.5 Validation and Stratified Negation

Section 2.2 suggested that the need for partial assignments comes from con-
straints combining circular references with negation, called non-stratified. We
now make this intuition more precise, showing that we can indeed focus solely
on total assignments if the constraints are stratified.

To formalize this idea, we borrow the notion of stratification from Datalog
[10] (assuming w.l.o.g that constraints do not contain two consecutive negation
symbols).

Definition 8 (stratification). A set S of shape definitions is stratified if there
is a total function str: S → N such that:

– If s1 appears in φs2 , then str(s1) ≤ str(s2)
– If s1 appears in φs2 in the scope of a negation then str(s1) < str(s2).

It must be emphasized that the language L does not include ≤n r or =n r.
If these operators were included, then one would need to redefine the second
condition accordingly, as ≤n r is a form of negation.

The following result confirms that a semantics based on total assignment is
sufficient for stratified sets of shapes.

Semantics and Validation of Recursive SHACL 329

Proposition 3. Let S be a stratified set of shapes and G a graph. Then there
exists a faithful assignment for G and S iff there exists a total faithful assignment
for G and S.

Proof (Sketch). For the right direction, the proof is trivial. For the left direction,
to simplify notation, we represent assignments as sets of positive and negative
atoms. Let σ be a faithful assignment for G and S, and let S1, .., Sn be the strata
of S, from lowest to highest. The proof constructs an extension σ′ of σ, stratum
by stratum, initialized with the empty set. For each stratum Si (starting from
S0), σ′ is extended in three steps. First, σ′ is extended with σ reduced to atoms
with shape names in Si. Then T is applied to σ′ recursively, until a fixed-point
is reached. Finally, σ′ is extended with each s(v) such that v is a node in G,
s ∈ Si and ¬s(v) �∈ σ′. It can be shown by induction on i that this extension
of σ′ always exists, and complies with all constraints for shapes in S0, .., Si. So
when i reaches n, the last extension of σ′ is a total faithful assignment for G
and S.
�
This result is important for computational reasons. It also implies that 3-valued
validation is not easier than 2-valued validation, which may come as a surprise.

4 Complexity

We now study the computational complexity of the validation problem, defined
as follows (full proofs are provided in the online appendix):

Validation:

Input: Graph G, set S of shapes
Decide: G is valid against S

Based on Proposition 2, we focused on instances with one target node (for
one shape in S). We also assume that this target node is already known. Table 2
summarizes our results. As is customary, since the size of G is likely to be orders
of magnitude larger than the size of S, we also study the problems Valida-

tion(S) and Validation(G), for a fixed set S of shapes and fixed graph G,
called data complexity and constraint complexity below.

We consider two fragments of the constraint language L: (i) L≥1,¬,∧ is the
fragment defined by the grammar φ:: = � | I | s | φ1 ∧ φ2 | ¬φ | ≥1 p.φ, where
p is an IRI, and (ii) L≥n,∧,∨,r,EQ is the fragment defined with φ:: = � | I | s |
φ1 ∧ φ2 | φ1 ∨ φ2 | ≥n r.φ | EQ(r1, r2), where r, r1, r2 are property paths and
φ1 ∨ φ2 is interpreted (as expected) as ¬(¬φ1 ∧ ¬φ2).

We start by showing an NP upper bound for combined complexity, based on
guessing a witnessing faithful assignment. Then we show that this upper bound
is tight, even for a fixed set of shapes (data complexity) using stratified negation
and basic operators (≥1,¬ and ∧). We also show that this bound is tight for a
fixed graph. Lastly, we show that allowing disjunction but disallowing negation
otherwise is sufficient to regain tractability.

330 J. Corman et al.

Table 2. Computational complexity of Validation. -c stands for complete.

Fragment Data Constraint Combined

L (= SHACL) NP-c NP-c NP-c

Stratified L≥1,¬,∧ NP-c NP-c NP-c

L≥n,∧,∨,r,EQ in P in P P-c

Let us start with NP membership. First, all property paths present in S can
be materialized in time polynomial in |G| · |S| before validation. In addition, by
introducing fresh shape names, S can be transformed in polynomial time into
an equivalent set S′ of shapes, whose constraints contain at most one operator.
Then assuming that we can guess a faithful assignment σ for G and S′, we only
to check σ is indeed faithful. To do so, it is sufficient to compute the value of
�φs�

v,G,σ for each node v in G and s ∈ S′, which is again polynomial in |G|+ |S|,
even with a binary encoding of cardinality constraints. Summing up, we have:

Proposition 4 (Combined – Upper Bound). Validation is in NP.

Now for the lower bound, validation is already intractable in data complexity
for stratified L≥1,¬,∧. This may come as a surprise, considering that data com-
plexity of ground fact entailment in stratified Datalog is in PTime [10]. We show
NP-hardness by a reduction from the satisfiability problem of a propositional
circuit: there is a fixed set S of shapes such that every propositional circuit can
be transformed (in linear time) into a graph, and this graph is valid against S
iff the circuit is satisfiable.

Proposition 5 (Data – Lower Bound). There is a stratified fixed set S of
shapes in L≥1,¬,∧ such that Validation(S) is NP-hard.

We also show that the problem is NP-hard in constraint complexity for the
same fragment (with a reduction from SAT):

Proposition 6 (Constraint – Lower Bound). There is a fixed graph G
such that Validation(G) is NP-hard, even if S is restricted to stratified sets
of shapes in L≥1,¬,∧.

As a more optimistic result, validation is in PTime if one allows disjunction
as a native operator, but disallows negation otherwise. The proof relies on the
(unique) minimal fixed-point σ of T w.r.t.
, which can be computed in time
polynomial in |G| + |S|. Let v0 be the (unique) target node to validate, against
shape s0. If ¬s0 ∈ σ(v0), then G is invalid. Otherwise, it can be shown that there
must be an extension of σ (w.r.t.
) which is faithful for G and S.

Proposition 7 (Combined – Upper Bound). Validation is in P for
L≥n,∧,∨,r,EQ.

Finally, we show PTime hardness for a sub-fragment of L≥n,∧,∨,r,EQ (without
property paths and path equality), with a log-space reduction from the problem
of evaluating a monotone boolean circuit.

Semantics and Validation of Recursive SHACL 331

Proposition 8 (Combined – Lower Bound). Validation is P-hard for
L≥n,∧,∨,r,EQ.

5 Approximation

The above intractability result for data complexity (Proposition 6), and even
for a stratified set of shapes, is an important limitation. In order to alleviate
this problem, we present in this section an approximation algorithm to decide
whether a graph G is valid against a set S of shapes, with an integer parameter
k. If k is bounded, then the algorithm is sound, and runs in time polynomial in
|G|. If k is unbound, then the algorithm is sound and complete, but may run
in time exponential in |G|. The approximation is sound in that the algorithm
returns Valid (resp. Invalid) only if G is valid (resp. not valid) against S.

For readability, from Proposition 2, we focus on validation with a single target
node v0, for shape s0. Algorithm 1 describes the procedure, composed of two
steps. The first step intuitively computes an assignment σminFix matching all
constraints enforced by the graph, regardless of the target. If the validity of
G cannot be decided after this (polynomial) step, then σminFix is extended by
assigning s0 to v0, and an attempt is made to propagate constraints from v0 to
its successors, in order for v0 to satisfy φs0 .

Step 1: Minimal Fixed-Point. As a reminder from Sect. 3.3, we use ΣG,S to
denote the set of all (possibly partial) assignments for G and S. The first step of
the algorithm computes the minimal fixed-point σminFix of the operator T (see
Definition 5) w.r.t.
. Because 〈ΣG,S ,
〉 is a semi-lattice and T is monotone
w.r.t.
 (Lemma 1), σminFix must exist and be unique. It can also be computed
in time polynomial in |G|, initializing σminFix with the empty set, and then
applying T to σminFix recursively, until a fixed-point is reached. This is performed
by procedure ComputeMinFix. If s0 ∈ σminFix(v0), then the graph is valid,
Line 2. Furthermore, any strictly faithful assignment of for G and S must be
a fixed-point of T (see Sect. 3.3), and therefore must extend σminFix. So from
Proposition 1, If ¬s0 ∈ σminFix(v0), then the graph is invalid, Line 3.

Step 2: Breadth-First Search. The next step consists in searching for a
faithful assignment, in a breadth-first fashion, starting from the target node
v0. We abuse notation and use set operators (∪,∈, etc.) to describe the stack.
Similarly, for brevity, we represent assignments interchangeably as functions or
as sets of (positive and negative) atoms.

Each element of the stack (i.e. each “branch” of this exploration) is a tuple
〈σ, σP , A, n〉, where:

– σ is the current assignment being constructed, initialized with σminFix ∪
{s0(v0)}.

– σP
 σ keeps track of shapes freshly assigned to a node during the previous
expansion of σ. For any element of the stack, if σP is empty, then no constraint
needs to be propagated in this branch, i.e. σ is a faithful assignment, and so
the graph is validated, line 7.

332 J. Corman et al.

– A is a set of atoms of the form s(v), such that s(v) �∈ σ and ¬s(v) �∈ σ,
– n is the current depth of the exploration, incremented each time σ is extended.

When n reaches k, the size of the stack cannot be extended anymore, which
triggers a call to Reduce, line 11, to merge some of the current branches.

Line 8, function extend computes each minimal extensions σ′ of σ such that:

– If s ∈ σP (v), then �φs�
v,G,σ′

= 1,
– If ¬sσP (v), then �φs�

v,G,σ′
= 0, and

– if s(v) ∈ A, then {s,¬s} ∩ σ(v) = ∅.

It can be shown that each call to extend can be executed in time O(|G||S|).
Finally, if the depth n of the exploration reaches k, line 11, then proce-

dure reduce prevents the number of elements in the stack to increase. Line 18,
function getClosestPair retrieves the two closest assignments σ1 and σ2 (in
terms of edit distance) in the Stack. Then function getConflicts 20 retrieves
the (possibly empty) set A of atoms which σ1(v) and σ2(v) disagree on, i.e.
s(v) ∈ A if both s and ¬s are in σ1(v) ∪ σ2(v), and the procedure replace sets
each σi to σi \ {s(v),¬s(v)}. After this step, either σ1
 σ2 or σ2
 σ1 must
hold, and only the greater of the two (w.r.t
) is retained (Line 23) and pushed
in the stack.

The number of possible assignments is of O(2|G|), but the number of assign-
ments created by extend is O(|G||S|). So if the parameter k is fixed, the reduced
stack makes sure that the execution time is O(|G||S|.k).

6 Related Work

Several schema languages have been proposed or implemented for RDF before
SHACL, and some of them are closely associated to the design of SHACL. But
first, it should be mentioned that RDF Schema (RDFS), contrary to what its
name may suggest, is not a schema language in the classical sense, but is pri-
marily used to infer implicit facts.

Among the proposals which do not relate (to our knowledge) to the genesis of
SHACL, are proposals for RDF integrity constraints [1,13]. We have not explored
a formal comparison between these formalisms and SHACL, but conjecture that
they are incomparable with SHACL.

SPIN6 allows the user to express constraints as SPARQL queries (natively, or
using templates) and to declare targets for these constraints, similar to SHACL
targets. SPIN became a W3C member submission in 2011, before being explicitly
superseded by SHACL in 2017. Being based on SPARQL, it supports negation,
but not full recursion.

ShEx has been actively developed since 2012 [6], as a dedicated constraint
language for RDF, strongly inspired by XML schema languages. The first version
of ShEx did support recursion, but no negation. A formal semantics was pro-
vided in [21], based on regular bag expressions. Recently, ShEx 2.07 incorporated
6 http://spinrdf.org/.
7 http://shex.io/shex-semantics/.

http://spinrdf.org/
http://shex.io/shex-semantics/

Semantics and Validation of Recursive SHACL 333

Algorithm 1. Approximation

Require: G′, S, s0, v0, k
1: σminFix ← ComputeMinFix(G′, S)
2: if s0 ∈ σminFix(v0) then return Valid

3: if ¬s0 ∈ σminFix(v0) then return Invalid

4: Stack ← 〈σminFix ∪ {s0(v0)}, {s0(v0)}, {atoms(G′, S)}, 0〉
5: while nonEmpty(Stack) do
6: 〈σ, σP , A, n〉 ← pop(Stack)
7: if σP = ∅ then return Valid

8: for all σ′ ∈ extend(σ, σP , A) do
9: push(T , 〈σ′, σ′ \ σ, A, n + 1〉)
10: end for
11: if n ≥ k then Stack ← reduce(Stack, |T |)
12: end while
13: return Unknown

14:
15: procedure reduce(Stack, m)
16: i = 0
17: while i ≤ m do
18: (〈σ1, σ

P
1 , A1, n1〉, 〈σ2, σ

P
2 , A2, n2〉) ← getClosestPair(Stack)

19: Stack ← Stack \{〈σ1, σ
P
1 , A1, n1〉, 〈σ2, σ

P
2 , A2, n2〉}

20: A ← getConflicts(σ1, σ2)
21: σ1 ← replace(σ1, A)
22: σ2 ← replace(σ2, A)
23: σ = max{σ1, σ2}
24: push(Stack, 〈σ, σP

1 ∪ σP
2 , A ∪ A1 ∪ A2,max{n1, n2}〉)

25: i ← i + 1
26: end while
27: end procedure

negation, and a formal semantics was provided in [7], together with a abstract
language called Shape Schemas. As highlighted in [5], ShEx and SHACL have
lot in common, and the semantics provided in [7] can be directly adapted to
SHACL. This proposal is also similar to the one made in this article, in that
validation is based on a typing verifying target and constraints, similar to our
notion of shape assignment. A difference though is that the semantics proposed
in [7] is restricted to stratified constraints. Moreover, the (unique) typing used
in [7] to define validation favors the validation of shapes in the lowest stratum,
so that the graph of Fig. 2 for instance would be considered invalid.

Another line of work is inspired by the Web Ontology Language (OWL),
which is based on Description Logics (DLs) [3]. Like RDFS, OWL was not
designed as a schema language, but adopts instead the open-world assumption,
not well-suited to express constraints. Still, proposals have been made to rea-
son with DLs understood as constraints: by introducing auto-epistemic opera-
tors [11], partitioning DL formulas into regular and constraint axioms [17,22],
or reasoning with closed predicates [19]. This last approach was actually

334 J. Corman et al.

proposed as a semantic grounding for SHACL [18], reducing constraint validation
to first-order satisfiability with closed binary predicates. But as illustrated with
Example Fig. 3, this semantics does not behave well in the presence of targets
and non-stratified constraints.

Recursion over negation has been traditionally studied in logical program-
ming (see e.g. [10]), and answer-set programming (see [20] in the context of
SPARQL), where stable model semantics (SMS) is one of the most prominent
paradigms [14]. But SMS is based on so-called minimal models, whereas shape
assignments may not be minimal. This makes encoding SHACL into logical pro-
gramming non trivial, as suggested by complexity results: ground-fact entailment
is data-tractable for stratified Datalog, in contrast to our semantics (see Propo-
sition 5). A possible way to relate the two semantics, at least for the stratified
case, is to reason about shape “complements” under SMS. Still, our preliminary
investigations tend to show that this is not straightforward.

7 Conclusion

The article proposes an abstract syntax and formal semantics for SHACL core
constraint components. This semantics is robust enough to handle constraints
with arbitrary recursion, which can be expressed in SHACL, but whose validation
is left explicitly open in the specification. One of our contributions is to highlight
semantic issues related to non-stratified SHACL targets. To address such cases,
we adopt a notion of partial assignment of (positive and negated) shapes to
nodes, and define a semantics with desirable properties, such as monotonicity
of forward-chaining, or equivalence with total assignments in the stratified case.
We then show that the validation problem is NP-complete for any fragment
with at least conjunction, negation and existential quantification, in the size of
either graph or constraints, regardless of stratification. Therefore we propose a
sound approximation algorithm, parameterized by an integer k, which guarantees
termination in time polynomial in the size of the graph.

As a continuation, we plan to investigate other problems, such as (finite)
satisfiability of a set of shapes, or SPARQL query containment in the presence
of SHACL constraints. We also expect this formalization to be abstract enough
to be extended to other constraint languages for graphs, such as ShEx, in order
to handle arbitrary recursion.

Acknowledgements. This work was supported by the QUEST, ROBAST and
OBATS projects at the Free University of Bozen-Bolzano, and the Millennium Institute
for Foundational Research on Data (IMFD), Chile.

Semantics and Validation of Recursive SHACL 335

References

1. Akhtar, W., Cortés-Calabuig, Á., Paredaens, J.: Constraints in RDF. In: Schewe,
K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 23–39. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23441-5 2

2. Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris,
S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 158–204. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 4

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

5. Boneva, I.: Comparative expressiveness of ShEx and SHACL (early working draft)
(2016)

6. Boneva, I., Labra-Gayo, J.E., Hym, S., Prud’hommeau, E.G., Solbrig, H.R., Sta-
worko, S.: Validating RDF with shape expressions. CoRR, abs/1404.1270 (2014)

7. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and validation of
shapes schemas for RDF. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 104–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 7

8. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive
SHACL (extended version). Technical report KRDB18-1. KRDB Research Center,
Free Univ. Bozen-Bolzano (2018)

9. Corman, J., Reutter, J.L., Savkovic, O.: Validating graph data against recursive
constraints: a semantics for SHACL. AMW (2018, to appear)

10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

11. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Log. (TOCL) 3(2), 177–225 (2002)

12. Ekaputra, F.J., Lin, X.: SHACL4P: SHACL constraints validation within Protégé
ontology editor. In: ICoDSE (2016)

13. Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF constraint checking.
In: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference,
EDBT/ICDT, Brussels, Belgium, 27 March 2015, pp. 205–212 (2015)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming, pp.
1070–1080. MIT Press (1988)

15. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C
Recomm. 21(10) (2013)

16. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property
paths. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6 1

17. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. Web Semant.: Sci. Serv. Agents World Wide Web 7(2), 74–89 (2009)

18. Patel-Schneider, P.F.: Using description logics for RDF constraint checking and
closed-world recognition. In: AAAI (2015)

19. Patel-Schneider, P.F., Franconi, E.: Ontology constraints in incomplete and com-
plete data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp.
444–459. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-
1 28

https://doi.org/10.1007/978-3-642-23441-5_2
https://doi.org/10.1007/978-3-642-03754-2_4
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-319-25007-6_1
https://doi.org/10.1007/978-3-642-35176-1_28
https://doi.org/10.1007/978-3-642-35176-1_28

336 J. Corman et al.

20. Polleres, A., Wallner, J.P.: On the relation between SPARQL1.1 and answer set
programming. J. Appl. Non-Class. Log. 23(1–2), 159–212 (2013)

21. Staworko, S., Boneva, I., Labra-Gayo, J.E., Hym, S., Prud’hommeaux, E.G., Sol-
brig, H.: Complexity and expressiveness of ShEx for RDF. In: ICDT (2015)

22. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In:
AAAI (2010)

	Semantics and Validation of Recursive SHACL
	1 Introduction
	2 Validating a Graph Against SHACL Shapes
	2.1 Recursive Constraints with Stratified Negation
	2.2 Non-stratified Constraints

	3 Formal Semantics for SHACL
	3.1 Notation
	3.2 Abstract Syntax and Semantics for SHACL Constraints
	3.3 Validation
	3.4 Properties of Validation
	3.5 Validation and Stratified Negation

	4 Complexity
	5 Approximation
	6 Related Work
	7 Conclusion
	References

