®

Check for
updates

Comunica: A Modular SPARQL Query
Engine for the Web

Ruben Taelman®), Joachim Van Herwegen, Miel Vander Sande,
and Ruben Verborgh

Ghent University — imec — IDLab, Ghent, Belgium
{ruben.taelman, joachim.herwegen,miel.vandersande,ruben.verborgh}@ugent.be

Abstract. Query evaluation over Linked Data sources has become
a complex story, given the multitude of algorithms and techniques for
single- and multi-source querying, as well as the heterogeneity of Web
interfaces through which data is published online. Today’s query proces-
sors are insufficiently adaptable to test multiple query engine aspects in
combination, such as evaluating the performance of a certain join algo-
rithm over a federation of heterogeneous interfaces. The Semantic Web
research community is in need of a flexible query engine that allows plug-
ging in new components such as different algorithms, new or experimen-
tal SPARQL features, and support for new Web interfaces. We designed
and developed a Web-friendly and modular meta query engine called
Comunica that meets these specifications. In this article, we introduce
this query engine and explain the architectural choices behind its design.
We show how its modular nature makes it an ideal research platform
for investigating new kinds of Linked Data interfaces and querying algo-
rithms. Comunica facilitates the development, testing, and evaluation of
new query processing capabilities, both in isolation and in combination
with others.

1 Introduction

Linked Data on the Web exists in many shapes and forms—and so do the pro-
cessors we use to query data from one or multiple sources. For instance, engines
that query RDF data using the SPARQL language [1] employ different algorithms
[2,3] and support different language extensions [4,5]. Furthermore, Linked Data
is increasingly published through different Web interfaces, such as data dumps,
Linked Data documents [6], SPARQL endpoints [7] and Triple Pattern
Fragments (TPF) interfaces [8]. This has led to entirely different query evalu-
ation strategies, such as server-side [7], link-traversal-based [9], shared client-
server query processing [8], and client-side (by downloading data dumps and load-
ing them locally).

The resulting variety of implementations suffers from two main prob-
lems: a lack of sustainability and a lack of comparability. Alterna-
tive query algorithms and features are typically either implemented as
forks of existing software packages [10-12] or as independent engines [13]. This
© Springer Nature Switzerland AG 2018

D. Vrandecié et al. (Eds.): ISWC 2018, LNCS 11137, pp. 239-255, 2018.
https://doi.org/10.1007/978-3-030-00668-6_15



http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00668-6_15&domain=pdf
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://doi.acm.org/10.1145/1804669.1804675
https://doi.org/10.1007/978-3-642-02184-8_2
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://olafhartig.de/files/Hartig_QueryingLD_DBSpektrum_Preprint.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/eswc2015.pdf
http://iswc2015.semanticweb.org/sites/iswc2015.semanticweb.org/files/93660097.pdf

240 R. Taelman et al.

practice has limited sustainability: forks are often not merged into the main
software distribution and hence become abandoned; independent implemen-
tations require a considerable upfront cost and also risk abandonment more
than established engines. Comparability is also limited: forks based on older
versions of an engine cannot meaningfully be evaluated against newer forks,
and evaluating combinations of cross-implementation features—such as differ-
ent algorithms on different interfaces—is not possible without code adapta-
tion. As a result, many interesting comparisons are never performed because
they are too costly to implement and maintain. For example, it is cur-
rently unknown how the Linked Data Eddies algorithm [13] performs over
a federation [8] of brTPF interfaces [14]. Another example is that the effects of
various optimizations and extensions for TPF interfaces [10-17] have only been
evaluated in isolation, whereas certain combinations will likely prove comple-
mentary.

In order to handle the increasing heterogeneity of Linked Data on the Web, as
well as various solutions for querying it, there is a need for a flexible and modular
query engine to experiment with all of these techniques—both separately and
in combination. In this article, we introduce Comunica to realize this vision.
It is a highly modular meta engine for federated SPARQL query evaluation
over heterogeneous interfaces, including TPF interfaces, SPARQL endpoints,
and data dumps. Comunica aims to serve as a flexible research platform for
designing, implementing, and evaluating new and existing Linked Data querying
and publication techniques.

Comunica differs from existing query processors on different levels:

1. The modularity of the Comunica meta query engine allows for extensions
and customization of algorithms and functionality. Users can build and fine-
tune a concrete engine by wiring the required modules through an RDF con-
figuration document. By publishing this document, experiments can repeated
and adapted by others.

2. Within Comunica, multiple heterogeneous interfaces are first-class citi-
zens. This enables federated querying over heterogeneous sources and makes
it for example possible to evaluate queries over any combination of SPARQL
endpoints, TPF interfaces, datadumps, or other types of interfaces.

3. Comunica is implemented using Web-based technologies in JavaScript,
which enables wusage through browsers, the command line, the
SPARQL protocol [7], or any Web or JavaScript application.

Comunica and its default modules are publicly available on GitHub and the
npm package manager under the open-source MIT license (canonical citation:
https://zenodo.org/record/12025094. Wq9GZhNuaHo).

This article is structured as follows. In the next section, we discuss the related
work, followed by the main features of Comunica in Sect. 3. After that, we intro-
duce the architecture of Comunica in Sect. 4, and its implementation in Sect. 5.
Next, we compare the performance of different Comunica configurations with
the TPF Client in Sect. 6. Finally, Sect. 7 concludes and discusses future work.


http://iswc2015.semanticweb.org/sites/iswc2015.semanticweb.org/files/93660097.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://arxiv.org/pdf/1608.08148.pdf
http://linkeddatafragments.org/publications/eswc2015.pdf
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://zenodo.org/record/1202509#.Wq9GZhNuaHo

Comunica: A Modular SPARQL Query Engine for the Web 241

2 Related Work

In this section, we illustrate the many possible degrees of freedom for SPARQL
query evaluation, and show that they are hard to combine, which is the problem
we aim to solve with Comunica. We first discuss the SPARQL query language, its
engines, and algorithms. After that, we discuss alternative Linked Data publish-
ing interfaces, and their connection to querying. Finally, we discuss the software
design patterns that are essential in the architecture of Comunica.

2.1 The Different Facets of SPARQL

SPARQL [1] is the W3C-recommended RDF query language. The traditional
way to implement a SPARQL query processor is to use it as an interface to
an underlying database, resulting in a so-called SPARQL endpoint [7]. This is
similar to how an SQL interface provides access to a relation database. The
internal storage can either be a native RDF store, e.g., AllegroGraph [18] and
Blazegraph [19], or a non-RDF store, e.g., Virtuoso [20] uses a object-relational
database management system.

Various algorithms have been proposed for optimized SPARQL query eval-
uation. Some algorithms for example use the concept of query rewriting [2]
based on algebraic equivalent query operations, others have proposed the
optimization of Basic Graph Pattern evaluation [3] using selectivity estimation
of triple patterns.

In order to evaluate SPARQL queries over datasets of different storage
types, SPARQL query frameworks were developed, such as Jena (ARQ) [21],
RDFLib [22], rdflib.js [23] and rdfstore-js [24]. Jena is a Java framework, RDFLib
is a python package, and rdflib.js and rdfstore-js are JavaScript modules. Jena—
or more specifically the ARQ APT—and RDFLib are fully SPARQL 1.1 [1] com-
pliant. rdflib.js and rdfstore-js both support a subset of SPARQL 1.1. These
SPARQL engines support in-memory models or other sources, such as Jena TDB
in the case of ARQ. Most of the query algorithms are tightly coupled to these
frameworks, which makes swapping out query algorithms for specific query oper-
ators hard or sometimes even impossible. Furthermore, complex things such as
federated querying over heterogeneous interfaces are difficult to implement using
these frameworks, as they are not supported out-of-the-box. This issue of mod-
ularity and heterogeneity are two of the main problems we aim to solve within
Comunica. The differences between Comunica and existing frameworks will be
explained in more detail in Sect. 3.

The Triple Pattern Fragments client [8] (also known as Client.js or 1df-
client) is a client-side SPARQL engine that retrieves data over HTTP through
Triple Pattern Fragments (TPF) interfaces [8]. Different algorithms [10,16,17] for
this client and TPF interface extensions [11,12,14,15] have been proposed to
reduce effort of server or client in some way. All of these efforts are however imple-
mented and evaluated in isolation. Furthermore, the implementations are tied to
TPF interface, which makes it impossible to use them for other types of data-
sources and interfaces. With Comunica, we aim to solve this by modularizing query



https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://doi.acm.org/10.1145/1804669.1804675
http://doi.acm.org/10.1145/1367497.1367578
https://jena.apache.org/
https://rdflib.readthedocs.io/en/stable/
https://github.com/linkeddata/rdflib.js
https://github.com/antoniogarrote/rdfstore-js
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/eswc2015.pdf
http://linkeddatafragments.org/publications/iswc2015-amf.pdf

242 R. Taelman et al.

operation implementations into separate modules, so that they can be plugged in
and combined in different ways, on top of different datasources and interfaces.

With Semantic Web technologies providing the capability to integrate data
from different sources, federated query processing has been an active area of
research. However, most of the existing frameworks require SPARQL end-
points on every source. The TPF Client instead federates over TPF interfaces,
and achieves similar performance compared to the state of the art [8] despite its
usage of a more lightweight interface. However, no frameworks exist that enable
federation over heterogeneous interfaces, such as the federation over any combi-
nation of SPARQL endpoints and TPF interfaces. With Comunica, we aim to
fill this gap. In addition dataset-centric approaches, alternative methods such
as link-traversal-based query evaluation [9] exist to query a web of Linked Data
documents.

2.2 Linked Data Fragments

In order to formally capture the heterogeneity of different Web interfaces to
publish RDF data, the Linked Data Fragment [8] (LDF) conceptual framework
uniformly characterizes responses of Web interfaces to RDF-based knowledge
graphs. The simplest type of LDF is a data dump—it is the response of a single
HTTP requests for a complete RDF dataset. Other types of LDFs includes
responses of SPARQL endpoints, TPF interfaces, and Linked Data documents.

Existing LDF research highlights that, when it comes to publishing datasets
on the Web, there is no silver bullet: no single interface works well in all situa-
tions, as each one involves trade-offs [8]. As such, data publishers must choose
the type of interface that matches their intended use case, target audience and
infrastructure. This however complicates client-side engines that need to retrieve
data from the resulting heterogeneity of interfaces. As shown by the TPF app-
roach, interfaces can be self-descriptive and expose one or more features [25],
to describe their functionality using a common vocabulary [26,27]. This allows
clients without prior knowledge of the exact inputs and outputs of an interface
to discover its usage at runtime.

A design goal of Comunica is to facilitate interaction with any current and
future interface within the LDF framework, both in single-source and federated
scenarios.

2.3 Software Design Patterns

In the following, we discuss three software design patterns that are relevant to
the modular design of the Comunica engine.

Publish-Subscribe Pattern. The publish-subscribe [28] design pattern
involves passing messages between publishers and subscribers. Instead of pro-
gramming publishers to send messages directly to subscribers, they are pro-
grammed to publish messages to certain categories. Subscribers can subscribe to



http://linkeddatafragments.org/publications/jws2016.pdf
http://olafhartig.de/files/Hartig_QueryingLD_DBSpektrum_Preprint.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
http://arxiv.org/abs/1609.07108

Comunica: A Modular SPARQL Query Engine for the Web 243

these categories which will cause them to receive these published messages, with-
out requiring prior knowledge of the publishers. This pattern is useful for decou-
pling software components from each other, and only requiring prior knowledge
of message categories. We use this pattern in Comunica for allowing different
implementations of certain tasks to subscribe to task-specific buses.

Actor Model. The actor model [29] was designed as a way to achieve highly
parallel systems consisting of many independent agents communicating using
messages, similar to the publish—-subscribe pattern. An actor is a computational
unit that performs a specific task, acts on messages, and can send messages
to other actors. The main advantages of the actor model are that actors can
be independently made to implement certain specific tasks based on messages,
and that these can be handled asynchronously. These characteristics are highly
beneficial to the modularity that we want to achieve with Comunica. That is
why we use this pattern in combination with the publish-subscribe pattern to
let each implementation of a certain task correspond to a separate actor.

Mediator Pattern. The mediator [30] pattern is able to reduce coupling
between software components that interact with each other, and to easily change
the interaction if needed. This can be achieved by encapsulating the interaction
between software components in a mediator component. Instead of the compo-
nents having to interact with each other directly, they now interact through the
mediator. These components therefore do not require prior knowledge of each
other, and different implementations of these mediators can lead to different
interaction results. In Comunica, we use this pattern to handle actions when
multiple actors are able to solve the same task, by for example choosing the best
actor for a task, or by combining the solutions of all actors.

3 Requirement Analysis

In this section, we discuss the main requirements and features of the Comunica
framework as a research platform for SPARQL query evaluation. Furthermore,
we discuss each feature based on the availability in related work. The main
feature requirements of Comunica are the following;:

SPARQL query evaluation The engine should be able to interpret, process
and output results for SPARQL queries.

Modularity Different independent modules should contain the implementation
of specific tasks, and they should be combinable in a flexible framework. The
configurations should be describable in RDF.

Heterogeneous interfaces Different types of datasource interfaces should be
supported, and it should be possible to add new types independently.

Federation The engine should support federated querying over different inter-
faces.

Web-based The engine should run in Web browsers using native Web
technologies.

In Table 1, we summarize the availability of these features in similar works.



244 R. Taelman et al.

Table 1. Comparison of the availability of the main features of Comunica in similar
works. (1) A subset of SPARQL 1.1 is implemented. (2) Querying over SPARQL end-
points, other types require implementing an internal storage interface. (3) Downloading
of dumps. (4) Federation only over SPARQL endpoints using the SERVICE keyword.

Feature TPF Client | ARQ | RDFLib | rdflib.js | rdfstore-js | Comunica
SPARQL v (1) v v V1) v v (1)
Modularity v
Heterogeneous interfaces v(2,3) | v(2,3) | vV(3) v (3) v
Federation v vV(4) | v(4) v
Web-based v v v v

3.1 SPARQL Query Evaluation

The recommended way of querying within RDF data, is using the SPARQL
query language. All of the discussed frameworks support at least the parsing
and execution of SPARQL queries, and reporting of results.

3.2 Modularity

Adding new functionality or changing certain operations in Comunica should
require minimal to no changes to existing code. Furthermore, the Comunica
environment should be developer-friendly, including well documented APIs and
auto-generation of stub code. In order to take full advantage of the Linked Data
stack, modules in Comunica must be describable, configurable and wireable in
RDF. By registering or excluding modules from a configuration file, the user is
free to choose how heavy or lightweight the query engine will be. Comunica’s
modular architecture will be explained in Sect.4. ARQ, RDFLib, rdflib.js and
rdfstore-js only support customization by implementing a custom query engine
programmatically to handle operators. They do not allow plugging in or out
certain modules.

3.3 Heterogeneous Interfaces

Due to the existence of different types of Linked Data Fragments for expos-
ing Linked Datasets, Comunica should support heterogeneous interfaces types,
including self-descriptive Linked Data interfaces such as TPF. This TPF inter-
face is the only interface that is supported by the TPF Client. Additionally,
Comunica should also enable querying over other sources, such as SPARQL end-
points and data dumps in RDF serializations. The existing SPARQL frameworks
mostly support querying against SPARQL endpoints, local graphs, and specific
storage types using an internal storage adapter.



Comunica: A Modular SPARQL Query Engine for the Web 245

3.4 Federation

Next to the different type of Linked Data Fragments for exposing Linked
Datasets, data on the Web is typically spread over different datasets, at dif-
ferent locations. As mentioned in Sect. 2, federated query processing is a way to
query over the combination of such datasets, without having to download the
complete datasets and querying over them locally. The TPF client supports fed-
erated query evaluation over its single supported interface type, i.e., TPF inter-
faces. ARQ and RDFLib only support federation over SPARQL endpoints using
the SERVICE keyword. Comunica should enable combined federated querying
over its supported heterogeneous interfaces.

3.5 Web-Based

Comunica must be built using native Web technologies, such as JavaScript and
RDF configuration documents. This allows Comunica to run in different kinds of
environments, including Web browsers, local (JavaScript) runtime engines and
command-line interfaces, just like the TPF-client, rdflib.js and rdfstore-js. ARQ
and RDFLib are able to run in their language’s runtime and via a command-
line interface, but not from within Web browsers. ARQ would be able to run in
browsers using a custom Java applet, which is not a native Web technology.

4 Architecture

In this section, we discuss the design and architecture of the Comunica meta
engine, and show how it conforms to the modularity feature requirement. In
summary, Comunica is collection of small modules that, when wired together,
are able to perform a certain task, such as evaluating SPARQL queries. We
first discuss the customizability of Comunica at design-time, followed by the
flexibility of Comunica at run-time. Finally, we give an overview of all modules.

4.1 Customizable Wiring at Design-Time Through Dependency
Injection

There is no such thing as the Comunica engine, instead, Comunica is a meta
engine that can be instantiated into different engines based on different configu-
rations. Comunica achieves this customizability at design-time using the concept
of dependency injection [31]. Using a configuration file, which is created before
an engine is started, components for an engine can be selected, configured and
combined. For this, we use the Components.js [32] JavaScript dependency injec-
tion framework, This framework is based on semantic module descriptions and
configuration files using the Object-Oriented Components ontology [33].

Description of Individual Software Components. In order to refer to
Comunica components from within configuration files, we semantically describe


https://martinfowler.com/articles/injection.html
http://componentsjs.readthedocs.io/en/latest/
https://linkedsoftwaredependencies.org/articles/describing-experiments/

246 R. Taelman et al.

all Comunica components using the Components.js framework in JSON-LD [34].
Listing 1 shows an example of the semantic description of an RDF parser.

Description of Complex Software Configurations. A specific instance of
a Comunica engine can be initialized using Components.js configuration files
that describe the wiring between components. For example, Listing 2 shows a
configuration file of an engine that is able to parse N3 and JSON-LD-based docu-
ments. This example shows that, due to its high degree of modularity, Comunica
can be used for other purposes than a query engine, such as building a custom
RDF parser.

Since many different configurations can be created, it is important to know
which one was used for a specific use case or evaluation. For that purpose,
the RDF documents that are used to instantiate a Comunica engine can be
published as Linked Data [33]. They can then serve as provenance and as the
basis for derived set-ups or evaluations.

{
"Q@context": [ ... ],
"@id": "npmd:@comunica/actor-rdf-parse-n3",
"components": [
{
"@id": "crpn3:Actor/RdfParse/N3",
"Qtype": "Class",
"extends": "cbrp:Actor/RdfParse",
"requireElement": "ActorRdfParseN3",
"comment": "An actor that parses Turtle-like RDF",
"parameters": [
{
"@id": "caam:Actor/AbstractMediaTypedFixed/mediaType",
"default": [ "text/turtle", "application/n-triples" ]
}
]
}
]
}

Listing 1: Semantic description of a component that is able to parse N3-
based RDF serializations. This component has a single parameter that allows
media types to be registered that this parser is able to handle. In this case, the
component has four default media types.

{
"@context": [ ... 1,
"@id": "http://example.org/myrdfparser",
"@type": "Runner",
"actors": [


https://linkedsoftwaredependencies.org/articles/describing-experiments/

Comunica: A Modular SPARQL Query Engine for the Web 247

{ "Otype": "ActorInitRdfParse",
"mediatorRdfParse": {
"@type": "MediatorRace",
"cc:Mediator/bus": { "@id": "cbrp:Bus/RdfParse" }
} 3,
{ "@type": "ActorRdfParseN3",
"cc:Actor/bus": "cbrp:Actor/RdfParse" 1},
{ "@type": "ActorRdfParseJsonLd",
"cc:Actor/bus": "cbrp:Actor/RdfParse" 1},
]
¥

Listing 2: Comunica configuration of ActorInitRdfParse for parsing an RDF
document in an unknown serialization. This actor is linked to a mediator with
a bus containing two RDF parsers for specific serializations.

4.2 Flexibility at Run-Time Using the Actor-Mediator-Bus Pattern

Once a Comunica engine has been configured and initialized, components can
interact with each other in a flexible way using the actor [29], mediator [30], and
publish-subscribe [28] patterns. Any number of actor, mediator and bus modules
can be created, where each actor interacts with mediators, that in turn invoke
other actors that are registered to a certain bus.

Fig. 1 shows an example logic flow between actors through a mediator and a
bus. The relation between these components, their phases and the chaining of
them will be explained hereafter.

— Action

Test  ¢--------- Reply Actor 1

Actor 0 Actor 2

Actor 3

Fig. 1. Example logic flow where Actor 0 requires an action to be performed. This is
done by sending the action to the Mediator, which sends a test action to Actors 1, 2
and 3 via the Bus. The Bus then sends all test replies to the Mediator, which chooses
the best actor for the action, in this case Actor 3. Finally, the Mediator sends the
original action to Actor 3, and returns its response to Actor 0.

Relation Between Actors and Buses. Actors are the main computational
units in Comunica, and buses and mediators form the glue that ties them
together and makes them interactable. Actors are responsible for being able
to accept certain messages via the bus to which they are subscribed, and for
responding with an answer. In order to avoid a single high-traffic bus for all
message types which could cause performance issues, separate buses exist for
different message types. Fig. 2 shows an example of how actors can be registered
to buses.




248 R. Taelman et al.

Turtle Parse Hash Join
Actor Actor
~_ _—

Parse Bus Join Bus
— ~~
JSON-LD Nested Loop
Parse Actor Join Actor

Fig.2. An example of two different buses each having two subscribed actors. The
left bus has different actors for parsing triples in a certain RDF serialization to triple
objects. The right bus has actors that join query bindings streams together in a certain
way.

Mediators Handle Actor Run and Test Phases. Each mediator is con-
nected to a single bus, and its goal is to determine and invoke the best actor for
a certain task. The definition of ‘best’ depends on the mediator, and different
implementations can lead to different choices in different scenarios. A mediator
works in two phases: the test phase and the run phase. The test phase is used to
check under which conditions the action can be performed in each actor on the
bus. This phase must always come before the run phase, and is used to select
which actor is best suited to perform a certain task under certain conditions. If
such an actor is determined, the run phase of a single actor is initiated. This
run phase takes this same type of message, and requires to effectively act on
this message, and return the result of this action. Fig. 3 shows an example of a
mediator invoking a run and test phase.

Parse Fast Parse Slow Parse
Bus Actor Actor

Parse X
_—

Test Parse X

Test Parse X

Test Parse X

T: 1ms, M: 10MB

Test Phase

T: 10ms, M: 1MB

Fast Parse Actor: T: 1ms, M: 10MB
Slow Parse Actor: T: 10ms, M: 1MB

Run Parse X

Parsed X

Run Phase

Parsed X

Fig. 3. Example sequence diagram of a mediator that chooses the fastest actor on a
parse bus with two subscribed actors. The first parser is very fast but requires a lot
of memory, while the second parser is slower, but requires less memory. Which one is
best, depends on the use case and is determined by the Mediator. The mediator first
calls the tests the actors for the action, and then runs the action using the best actor.




Comunica: A Modular SPARQL Query Engine for the Web 249

4.3 Modules

At the time of writing, Comunica consists of 79 different modules. This consists
of 13 buses, 3 mediator types, 57 actors and 6 other modules. In this section, we
will only discuss the most important actors and their interactions.

The main bus in Comunica is the query operation bus, which consists of 19
different actors that provide at least one possible implementation of the typical
SPARQL operations such as quad patterns, basic graph patterns (BGPs), unions,
projects, ... These actors interact with each other using streams of quad or
solution mappings, and act on a query plan expressed in in SPARQL algebra [1].

In order to enable heterogeneous sources to be queried in a federated way,
we allow a list of sources, annotated by type, to be passed when a query is
initiated. These sources are passed down through the chain of query operation
actors, until the quad pattern level is reached. At this level, different actors exist
for handling a single source of a certain type, such as TPF interfaces, SPARQL
endpoints, local or remote datadumps. In the case of multiple sources, one actor
exists that implements a federation algorithm defined for TPF [8], but instead of
federating over different TPF interfaces, it federates over different single-source
quad pattern actors.

At the end of the pipeline, different actors are available for serializing the
results of a query in different ways. For instance, there are actors for serializing
the results according to the SPARQL JSON [35] and XML [36] result specifica-
tions, but actors with more visual and developer-friendly formats are available
as well.

5 Implementation

Comunica is implemented in TypeScript/JavaScript as a collection of Node
modules, which are able to run in Web browsers using native Web tech-
nologies. Comunica is available under an open license on GitHub and on
the NPM package manager. The 79 Comunica modules are tested thoroughly,
with more than 1,200 unit tests reaching a test coverage of 100%. In order
to be compatible with existing JavaScript RDF libraries, Comunica follows
the JavaScript API specification by the RDFJS community group, and will
actively be further aligned within this community. In order to encourage col-
laboration within the community, we extensively use the GitHub issue tracker
for planned features, bugs and other issues. Finally, we publish detailed
documentation for the usage and development of Comunica.

We provide a default Linked Data-based configuration file with all avail-
able actors for evaluating federated SPARQL queries over heterogeneous sources.
This allows SPARQL queries to be evaluated using a command-line tool, from a
Web service implementing the SPARQL protocol [7], within a JavaScript appli-
cation, or within the browser. We fully implemented SPARQL 1.0 [37] and a
subset of SPARQL 1.1 [1] at the time of writing. In future work, we intend to
implement additional actors for supporting SPARQL 1.1 completely.



https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://linkeddatafragments.org/publications/jws2016.pdf
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/rdf-sparql-XMLres/
https://zenodo.org/record/1202509#.Wq9GZhNuaHo
https://www.npmjs.com/org/comunica
https://www.w3.org/community/rdfjs/
https://www.w3.org/community/rdfjs/2018/04/23/rdf-js-the-new-rdf-and-linked-data-javascript-library/
https://github.com/comunica/comunica/issues
https://comunica.readthedocs.io
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

250 R. Taelman et al.

Comunica currently supports querying over the following types of
heterogeneous datasources and interfaces:

Triple Pattern Fragments interfaces [8]

— Quad Pattern Fragments interfaces (an experimental extension of
TPF with a fourth graph element)

SPARQL endpoints [7]

— Local and remote dataset dumps in RDF serializations.

— HDT datasets [38]

— Versioned OSTRICH datasets [39]

In order to demonstrate Comunica’s ability to evaluate federated query
evaluation over heterogeneous sources, the following guide shows how you can
try this out in Comunica yourself.

Support for new algorithms, query operators and interfaces can be imple-
mented in an external module, without having to create a custom fork of the
engine. The module can then be plugged into existing or new engines that are
identified by RDF configuration files.

In the future, we will also look into adding support for other interfaces such
as brTPF [14] for more efficient join operations and VIPF [15] for queries over
versioned datasets.

6 Performance Analysis

One of the goals of Comunica is to replace the TPF Client as a more flexible
and modular alternative, with at least the same functionality and similar
performance. The fact that Comunica supports multiple heterogeneous inter-
faces and sources as shown in the previous section validates this flexibility and
modularity, as the TPF Client only supports querying over TPF interfaces.

Next to a functional completeness, it is also desired that Comunica achieves
similar performance compared to the TPF Client. The higher modularity of
Comunica is however expected to cause performance overhead, due to the addi-
tional bus and mediator communication, which does not exist in the TPF Client.
Hereafter, we compare the performance of the TPF Client and Comunica and
discover that Comunica has similar performance to the TPF Client. As the
main goal of Comunica is modularity, and not absolute performance, we do not
compare with similar frameworks such as ARQ and RDFLib. Instead, relative
performance of evaluations using the same engine under different configurations
is key for comparisons, which will be demonstrated using Comunica hereafter.

For the setup of this evaluation we used a single machine (Intel Core i5-3230M
CPU at 2.60 GHz with 8 GB of RAM), running the Linked Data Fragments server
with a HDT-backend [38] and the TPF Client or Comunica, for which the exact
versions and configurations will be linked in the following workflow. The main
goal of this evaluation is to determine the performance impact of Comunica,
while keeping all other variables constant.



http://linkeddatafragments.org/publications/jws2016.pdf
https://github.com/LinkedDataFragments/Server.js/tree/feature-qpf-latest
https://github.com/LinkedDataFragments/Server.js/tree/feature-qpf-latest
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.websemanticsjournal.org/index.php/ps/article/view/328
https://rdfostrich.github.io/article-demo/
https://gist.github.com/rubensworks/34bb69fa6c83176bce60a5e8a25051e8
https://github.com/comunica/comunica/blob/master/packages/actor-init-sparql/config/config-default.json
https://arxiv.org/pdf/1608.08148.pdf
http://rubensworks.net/raw/publications/2017/vtpf.pdf
http://www.websemanticsjournal.org/index.php/ps/article/view/328

Comunica: A Modular SPARQL Query Engine for the Web 251

In order to illustrate the benefit of modularity within Comunica, we eval-
uate using two different configurations of Comunica. The first configuration
(Comunica-sort) implements a BGP algorithm that is similar to that of the origi-
nal TPF Client: it sorts triple patterns based on their estimated counts and evalu-
ates and joins them in that order. The second configuration (Comunica-smallest)
implements a simplified version of this BGP algorithm that does not sort all
triple patterns in a BGP, but merely picks the triple pattern with the smallest
estimated count to evaluate on each recursive call, leading to slightly different
query plans.

We used the following evaluation workflow:

1. Generate a WatDiv [40] dataset with scale factor=100.

Generate the corresponding default WatDiv queries with query-count=5.

3. Install  the server software configuration,  implementing  the  TPF
specification, with its dependencies.

4. Install the TPF Client software, implementing the SPARQL 1.1 protocol,
with its dependencies.

5. Execute the generated WatDiv queries 3 times on the TPF Client, after doing
a warmup run, and record the execution times results.

6. Install the Comunica software configuration, implementing the SPARQL 1.1
protocol, with its dependencies, using the Comunica-sort algorithm.

7. Execute the generated WatDiv queries 3 times on the Comunica client, after
doing a warmup run, and record the execution times.

8. Update the Comunica installation to use a new configuration supporting the
Comunica-smallest algorithm.

9. Execute the generated WatDiv queries 3 times on the Comunica client, after
doing a warmup run, and record the execution times.

N

[ TeF
15 [ Comunica-sort
I Comunica-smallest

Duration (sec)
Duration (sec)

Cl FlI F2 F3 F4 F5 LI 12 L3 14 L5 S1 S2 S3 S4 S5 S6 S7 c2  c3

Fig. 4. Average query evaluation times for the TPF Client, Comunica-sort, and
Comunica-smallest for all queries (shorter is better). C2 and C3 are shown separately
because of their higher evaluation times.


http://dx.doi.org/10.1007/978-3-319-11964-9_13
https://github.com/comunica/test-comunica/tree/ISWC2018/sparql/watdiv-10M
https://linkedsoftwaredependencies.org/raw/ldf-availability-experiment-config.jsonld
https://www.hydra-cg.com/spec/latest/triple-pattern-fragments/
https://www.hydra-cg.com/spec/latest/triple-pattern-fragments/
https://linkedsoftwaredependencies.org/raw/ldf-availability-experiment-setup.ttl
https://github.com/LinkedDataFragments/Client.js
https://www.w3.org/TR/sparql11-protocol
https://linkedsoftwaredependencies.org/raw/ldf-availability-experiment-client.ttl
https://raw.githubusercontent.com/comunica/test-comunica/master/results/watdiv-ldf.csv
https://raw.githubusercontent.com/comunica/test-comunica/master/config/config-sort.json
https://www.w3.org/TR/sparql11-protocol
https://www.w3.org/TR/sparql11-protocol
https://raw.githubusercontent.com/comunica/test-comunica/master/config/comunica-npm.ttl
https://raw.githubusercontent.com/comunica/test-comunica/master/results/watdiv-comunica-sort.csv
https://raw.githubusercontent.com/comunica/test-comunica/master/config/config-smallest.json
https://raw.githubusercontent.com/comunica/test-comunica/master/results/watdiv-comunica.csv

252 R. Taelman et al.

The results from Fig.4 show that Comunica is able to achieve similar per-
formance compared to the TPF Client. Concretely, both Comunica variants are
faster for 11 queries, and slower for 9 queries. However, the difference in evalua-
tion times is in most cases very small, and are caused by implementation details,
as the implemented algorithms are equivalent. Contrary to our expectations, the
performance overhead of Comunica’s modularity is negligible. Comunica there-
fore improves upon the TPF Client in terms of modularity and functionality,
and achieves similar performance.

These results also illustrate the simplicity of comparing different algorithms
inside Comunica. In this case, we compared an algorithm that is similar to that
of the original TPF Client with a simplified variant. The results show that the
performance is very similar, but the original algorithm (Comunica-sort) is faster
in most of the cases. It is however not always faster, as illustrated by query C1,
where Comunica-sort is almost a second slower than Comunica-smallest. In this
case, the heuristic algorithm of the latter was able to come up with a slightly
better query plan. Our goal with this result is to show that Comunica can easily
be used to compare such different algorithms, where future work can focus on
smart mediator algorithms to choose the best BGP actor in each case.

7 Conclusions

In this work, we introduced Comunica as a highly modular meta engine for
federated SPARQL query evaluation over heterogeneous interfaces. Comunica is
thereby the first system that accomplishes the Linked Data Fragments vision
of a client that is able to query over heterogeneous interfaces. Not only can
Comunica be used as a client-side SPARQL engine, it can also be customized
to become a more lightweight engine and perform more specific tasks, such as
for example only evaluating BGPs over Turtle files, evaluating the efficiency of
different join operators, or even serve as a complete server-side SPARQL query
endpoint that aggregates different datasources. In future work, we will look into
supporting supporting alternative (non-semantic) query languages as well, such
as GraphQL [41].

If you are a Web researcher, then Comunica is the ideal research platform
for investigating new Linked Data publication interfaces, and for experimenting
with different query algorithms. New modules can be implemented independently
without having to fork existing codebases. The modules can be combined with
each other using an RDF-based configuration file that can be instantiated into
an actual engine through dependency injection. However, the target audience is
broader than just the research community. As Comunica is built on Linked Data
and Web technologies, and is extensively documented and has a ready-to-use
API, developers of RDF-consuming (Web) applications can also make use of the
platform. In the future, we will continue maintaining and developing Comunica
and intend to support and collaborate with future researchers on this platform.

The introduction of Comunica will trigger a new generation of Web querying
research. Due to its flexibility and modularity, existing areas can be combined



http://facebook.github.io/graphql/October2016/
https://github.com/comunica/comunica/wiki/Sustainability-Plan

Comunica: A Modular SPARQL Query Engine for the Web 253

and evaluated in more detail, and new promising areas that remained covered

so far will be exposed.

Acknowledgements. The described research activities were funded by Ghent Univer-
sity, imec, Flanders Innovation & Entrepreneurship (AIO), and the European Union.
Ruben Verborgh is a postdoctoral fellow of the Research Foundation - Flanders.

References

10.

11.

12.

Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C
(2013). https://www.w3.org/TR/2013/REC-sparqll1-query-20130321/

Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: Proceedings of the 13th International Conference on Database Theory, pp. 4-33
(2010)

Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: Proceedings of the 17th
International Conference on World Wide Web, pp. 595-604 (2008)

Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Pellegrini, T.,
Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked
Media: Integrating Knowledge Management, New Media Technologies and Seman-
tic Systems, vol. 221, pp. 7-24. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02184-8_2

Cheng, J., Ma, Z.M., Yan, L.: -SPARQL: a flexible extension of SPARQL. In:
Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol.
6261, pp. 487-494. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15364-8_41

Berners-Lee, T.: Linked Data (2009). https://www.w3.org/Designlssues/
LinkedData.html

Feigenbaum, L., Todd Williams, G., Grant Clark, K., Torres, E.: SPARQL 1.1
Protocol. W3C (2013). https://www.w3.org/TR/2013/REC-sparqll1-protocol-
20130321/

Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the web. J. Web Semantics 37(38), 184-206 (2016)

Hartig, O.: An overview on execution strategies for Linked Data queries.
Datenbank-Spektrum 13, 89-99 (2013)

Van Herwegen, J., Verborgh, R., Mannens, E., Van de Walle, R.: Query execution
optimization for clients of triple pattern fragments. In: Gandon, F., Sabou, M.,
Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015.
LNCS, vol. 9088, pp. 302-318. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18818-8_19

Vander Sande, M., Verborgh, R., Van Herwegen, J., Mannens, E., Van de Walle, R..:
Opportunistic linked data querying through approximate membership metadata.
In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 92-110. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_6

Van Herwegen, J., De Vocht, L., Verborgh, R., Mannens, E., Van de Walle, R.:
Substring filtering for low-cost linked data interfaces. In: Arenas, M., et al. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 128-143. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25007-6_8


https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-15364-8_41
https://doi.org/10.1007/978-3-642-15364-8_41
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://doi.org/10.1007/978-3-319-18818-8_19
https://doi.org/10.1007/978-3-319-18818-8_19
https://doi.org/10.1007/978-3-319-25007-6_6
https://doi.org/10.1007/978-3-319-25007-6_8
https://doi.org/10.1007/978-3-319-25007-6_8

254

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.
25.
26.

27.

28.

29.

30.

31.

32.
33.

R. Taelman et al.

Acosta, M., Vidal, M.-E.: Networks of linked data eddies: an adaptive web query
processing engine for RDF data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS,
vol. 9366, pp. 111-127. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25007-6_7

Hartig, O., Buil-Aranda, C.: Bindings-restricted triple pattern fragments. In:
Debruyne, C. (ed.) OTM 2016. LNCS, vol. 10033, pp. 762-779. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48472-3_48

Taelman, R., Vander Sande, M., Verborgh, R., Mannens, E.: Versioned triple pat-
tern fragments: a low-cost linked data interface feature for web archives. In: Pro-
ceedings of the 3rd Workshop on Managing the Evolution and Preservation of the
Data Web (2017)

Folz, P., Skaf-Molli, H., Molli, P.: CyCLaDEs: a decentralized cache for triple
pattern fragments. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto,
S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 455-469. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-34129-3_28

Taelman, R., Verborgh, R., Colpaert, P., Mannens, E.: Continuous client-side query
evaluation over dynamic Linked Data. In: Sack, H., Rizzo, G., Steinmetz, N.,
Mladenié, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 273—-289.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5_44

Aasman, J.: AllegroGraph: RDF Triple Database, vol. 17. Oakland Franz Incorpo-
rated, Cidade (2006)

Thompson, B.B., Personick, M., Cutcher, M.: The Bigdata® RDF graph database.
In: Linked Data Management, pp. 193-237 (2014)

Erling, O., Mikhailov, I.: Virtuoso: RDF support in a native RDBMS. In: de Vir-
gilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Manage-
ment, pp. 501-519. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-04329-1_21

Apache Jena. https://jena.apache.org/

RDFLib. https://rdflib.readthedocs.io/en/stable/

rdflib.js. https://github.com/linkeddata/rdflib.js

rdfstore-js. https://github.com/antoniogarrote/rdfstore-js

Verborgh, R., Dumontier, M.: A Web API ecosystem through feature-based reuse.
CoRR. abs/1609.07108 (2016)

Lanthaler, M., Giitl, C.: Hydra: a vocabulary for hypermedia-driven web APIs. In:
LDOW, vol. 996 (2013)

Taelman, R., Verborgh, R.: Declaratively describing responses of hypermedia-
driven web APIs. In: Proceedings of the 9th International Conference on Knowledge
Capture (2017)

Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. ACM
(1987)

Hewitt, C., Bishop, P., Steiger, R.: Session 8 formalisms for artificial intelligence
a universal modular actor formalism for artificial intelligence. In: Advance Papers
of the Conference, p. 235. Stanford Research Institute (1973)

Gamma, E.: Design Patterns: Elements of Reusable Object-oriented Software.
Pearson Education India, Delhi (1995)

Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern
(2004). https://martinfowler.com/articles/injection.html

Taelman, R.: Components.js. http://componentsjs.readthedocs.io/en/latest/

Van Herwegen, J., Taelman, R., Capadisli, S., Verborgh, R.: Describing configura-
tions of software experiments as Linked Data. In: Proceedings of the 1st Workshop
on Enabling Open Semantic Science (2017)


https://doi.org/10.1007/978-3-319-25007-6_7
https://doi.org/10.1007/978-3-319-25007-6_7
https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.1007/978-3-319-34129-3_28
https://doi.org/10.1007/978-3-319-47602-5_44
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1007/978-3-642-04329-1_21
https://jena.apache.org/
https://rdflib.readthedocs.io/en/stable/
https://github.com/linkeddata/rdflib.js
https://github.com/antoniogarrote/rdfstore-js
https://martinfowler.com/articles/injection.html
http://componentsjs.readthedocs.io/en/latest/

34.

35.

36.

37.

38.

39.

40.

41.

Comunica: A Modular SPARQL Query Engine for the Web 255

World Wide Web Consortium, et al.: JSON-LD 1.0: a JSON-based serialization for
linked data (2014)

Grant Clark, K., Feigenbaum, L., Torres, E.. SPARQL 1.1 Query Results JSON
Format. W3C (2013). https://www.w3.org/TR/2013/REC-sparqll1-results-json-
20130321/

Hawke, S.: SPARQL Query Results XML Format (Second Edition). W3C (2013).
https://www.w3.org/ TR /rdf-sparql-XMLres/

Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
(2008). https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
Ferndndez, J.D., Martinez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). Web Semant.
Sci. Serv. Agents World Wide Web 19, 22-41 (2013)

Taelman, R., Vander Sande, M., Verborgh, R.: OSTRICH: versioned random-access
triple store. In: Proceedings of the 27th International Conference Companion on
World Wide Web (2018)

Alug, G., Hartig, O., Ozsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796,
pp. 197-212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-
9.13

Facebook, Inc.: GraphQL. Working Draft, October 2016. http://facebook.github.
io/graphql/October2016/


https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/rdf-sparql-XMLres/
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-319-11964-9_13
http://facebook.github.io/graphql/October2016/
http://facebook.github.io/graphql/October2016/

	Comunica: A Modular SPARQL Query Engine for the Web
	1 Introduction
	2 Related Work
	2.1 The Different Facets of SPARQL
	2.2 Linked Data Fragments
	2.3 Software Design Patterns

	3 Requirement Analysis
	3.1 SPARQL Query Evaluation
	3.2 Modularity
	3.3 Heterogeneous Interfaces
	3.4 Federation
	3.5 Web-Based

	4 Architecture
	4.1 Customizable Wiring at Design-Time Through Dependency Injection
	4.2 Flexibility at Run-Time Using the Actor-Mediator-Bus Pattern
	4.3 Modules

	5 Implementation
	6 Performance Analysis
	7 Conclusions
	References




