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Abstract. Recent studies suggest that combined analysis of Magnetic
resonance imaging (MRI) that measures brain atrophy and positron
emission tomography (PET) that quantifies hypo-metabolism provides
improved accuracy in diagnosing Alzheimer’s disease. However, such
techniques are limited by the availability of corresponding scans of each
modality. Current work focuses on a cross-modal approach to estimate
FDG-PET scans for the given MR scans using a 3D U-Net architecture.
The use of the complete MR image instead of a local patch based app-
roach helps in capturing non-local and non-linear correlations between
MRI and PET modalities. The quality of the estimated PET scans is
measured using quantitative metrics such as MAE, PSNR and SSIM. The
efficacy of the proposed method is evaluated in the context of Alzheimer’s
disease classification. The accuracy using only MRI is 70.18% while joint
classification using synthesized PET and MRI is 74.43% with a p-value of
0.06. The significant improvement in diagnosis demonstrates the utility
of the synthesized PET scans for multi-modal analysis.

1 Introduction

Alzheimer’s disease (AD) is a chronic neuro-degenerative disorder that causes
problems with memory, thinking and behavior. It is a progressive disease that
gets worse with time, making early diagnosis very crucial [13]. Recently, vari-
ous techniques using multi-modal image analysis have been proposed to identify
bio-markers that aid in accurate diagnosis of AD [12]. It is evident that multi-
ple modalities provide complementary information related to the disease, which
when combined increases the efficacy of diagnosis. Joint analysis of positron
emission tomography (PET) and magnetic resonance imaging (MRI) has been
accepted as a method to diagnose AD [19]. While gray matter atrophy and ven-
tricular enlargement in MRI are established markers for pathology, pattern of
neuronal uptake and cerebral distribution of FDG in PET is also a discrimi-
nating factor for AD. However, PET in comparison to MRI is a relatively new
modality and acquiring different modality scans for a single patient is not always
feasible due to high cost, lack of imaging facilities and increased risk of radia-
tion exposure. Current work attempts to use the information from MR image
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to estimate virtual PET scan and further explores the value of these synthetic
PET scans in enhancing disease prediction accuracy when combined with MRI.

In recent years, various approaches based on machine learning have been pro-
posed to predict one modality from another or a combination of other modal-
ities. To reduce radiation dose [14], employs context-aware GANs to predict
CT scans from MR scans. Similarly, a regression forest based framework was
developed in [7] for predicting a standard-dose brain FDG-PET from a low-dose
PET image and its corresponding MRI. A more challenging cross-modal synthe-
sis task involves predicting functional scans from their corresponding structural
scans. [10] used a patch based CNN which is capable of capturing non-linear
mappings between PET and MRI. Few techniques based on partial least squares
regression (PLSR) [12] or independent component analysis (ICA) [17], mapping
non-local correlations have also been proposed.

There are two important aspects to consider when estimating FDG-PET
images from their corresponding MRI Scans: (a) correlation between these
modalities is not purely local or one-to-one; PET is a functional modality that
quantifies hypo-metabolism and MR being a structural one measures brain atro-
phy [1,5] and (b) relationship between these modalities is quite complicated and
nonlinear. The Fig. 1 shows corresponding slices of MR and PET scans of the
same subject where the correlation values between local patches vary signifi-
cantly in the range [−0.86, 0.94]. The technique in [10] based on deep learning
uses patches that are defined in a local manner where a local patch of MR cor-
responds to a local patch of PET to learn the mapping. In contrast, the PLSR
method [12] tries to capture global or non-overlapping correlations in the images,
but maps inputs and outputs in a linear fashion. To effectively estimate PET
from MR, the model has to capture relationships between non-adjacent voxels
and learn non-linear mapping from MR to PET.

Fig. 1. A sample pair of MRI and its corresponding PET slice depict lack of one-to-one
correspondence at individual voxels or local neighborhoods in terms of signal intensities
and details.

Deep learning architectures have recently emerged as the most prominent and
powerful techniques to learn complex non-linear transformations. Specifically,
convolution neural networks (CNN) have been used to solve various problems
like image recognition, segmentation and classification in computer vision. These
models are hierarchical and have proved to be able to extract different types of
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features automatically. Unlike patch based networks that involve extracting and
training using millions of patches (making them computationally inefficient),
these networks directly process the entire input image to generate the final out-
put image.

One such recently used network is deep convolutional auto-encoders based
on U-Net architecture [15] with skip-like connections. In this work, convention-
ally unsupervised auto-encoders [18] are used in a supervised setting to learn
a joint mapping between the two-modalities. But a major drawback for fully-
connected networks is the increased chance of overfitting due to very large num-
ber of parameters and less training data available in medical images. Conse-
quently, 3D fully convolutional network is employed that is not only capable of
capturing global/non-local correlations but also models the input-output map-
ping using non-linear functions. The loss function used is binary cross-entropy
as the loss function. As the accuracy of the predicted PET scans determines
the success of any type of downstream analysis (classification, ROI analysis,
etc.), the quality of the synthesized PET scans is thoroughly evaluated using
quantitative metrics against ground truth. We have used three metrics namely,
mean-absolute loss (MAE), peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM). The efficacy of the proposed approach is further evalu-
ated through multi-modal AD classification using logistic regression.

Our contributions in this paper are the following:

– We propose the first global and non-linear cross-modal approach for PET esti-
mation from MR images via adapting 3D convolutional U-Net [2] architecture
which takes care of non-local intensity correlations as well as non-linear map-
ping of input to output.

– We extensively evaluate our proposed cross-modal method against the exist-
ing patch based estimation method on three different metrics.

– We further assess the significance of estimated PET scans from the proposed
method on the task of multi-modal Alzheimer’s Disease Classification.

2 Methods

Given T1 weighted MRI scans represented as X and FDG-PET scans Y for k
sample subjects with size x1 × x2 × x3 and y1 × y2 × y3 respectively. The task is
to learn a mapping between the above mentioned modalities where every voxel
in the given input scan is used to predict every voxel in the output scan. We
use a 3D U-Net based architecture to estimate the corresponding PET scan. We
have used gray matter (GM) from MRI scan as an input to the model. Gray
Matter is used to estimate PET scan due to its high correlation in determining
AD and normals. The architecture though is not a fully connected network but
repetitive convolutions at multiple layers added with skip connections ensures
that global correlations are captured.
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Fig. 2. 3D Regression U-Net architecture to generate a virtual PET scan using MRI
scan.

2.1 Dataset

The experiments have been conducted on scans obtained from Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [13]. A total
of 384 subjects having both MRI and PET modalities (192 Normals and 192
AD) were used. We chose all the subjects that had both MR and PET images
from the ADNI dataset available online. This includes scans from different pop-
ulations from different areas as mentioned in [3]. Since we dont use any clinical
score or demographic details as input or as ground truth in our method we did
not mention details in the paper.

2.2 Preprocessing

As the downloaded ADNI dataset was not pre-processed, we implemented a
manual pre-processing pipeline. MR Scans were first registered to MNI template
space using FSL package [6].This was mandatory since all the images are of
different sizes and registering them to a common space is required (to maintain
homogeneity). All the images can be registered to a common image but we chose
MNI since it is a standard template in the literature as mentioned in [9]. The
registered scans were then skull-stripped using ROBEX [4] which were further
normalized to [0–1] intensity values (to avoid the problem of gradients explod-
ing and convergence). These preprocessed scans were then segmented into gray
matter (GM), white matter (WM) and cerebral-spinal fluid (CSF) using FSL.
There were multiple PET images for the same subject. So, we first registered all
the other PET images to one of the reference PET and then we averaged all the
registered PET images. These averaged out PET images were aligned to MR

http://adni.loni.usc.edu
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images followed by registration to the same template space and then normalized
to [0–1] intensity values. Both MR and PET scans were then down sampled to
64 × 64 × 64 voxels to reduce the network parameters (Fig. 3 clearly shows that
although the size was small the details in the images were still intact and we
could figure out the difference between AD and normals. This was a trade off
between computational power and size of the image.)

2.3 Network Architecture

Figure 2 shows the complete architecture of the modified network. It is similar
to 3D U-Net [15] architecture but has a sigmoid layer as the last layer which
generates the estimated PET image with same dimensions as the input MR
image. In this network, the weights are optimized to perform a regression task,
where the objective is to learn a mapping between gray matter extracted from
MRI scans and PET scans.

The network essentially comprises of an encoder and a decoder. Encoder is a
modified convolutional network. It consists of 3× 3× 3 convolutions followed by
a rectified linear unit and a down-sampling operation performed using 2× 2× 2
max pooling with a stride of 2. With each layer, we have increased the number
of features maps. The decoder is an expanding network where every step consist
of an upsampling followed by 3 × 3 × 3 convolutions and batch normalization
layers. In addition to the simple encoder-decoder architecture, there are skip
connections which concatenate features of corresponding size from encoder to
decoder layers. Although the inclusion of down-sampling layers leads to loss of
information, the addition of skip connections between enocder and decoder helps
retain some amount of information across higher layers from lower layers. This
leads to generation of slightly smoother scans in comparison to ground truth.
The final layer is 1 × 1 × 1 convolution consisting of sigmoid activation which
brings all values to [0–1] pixel range. Weights of the network are optimized in an
end to end manner using binary cross entropy loss function as shown in equation:

H(yt, ŷt) = −
∑

x

yt(x) log ŷt(x) (1)

where where ŷt is the predicted PET scan, yt the ground truth PET scan and x
is the total number of samples present in a batch.

3 Experiments

The proposed architecture was trained on NVIDIA Geforce GTX1080. For effi-
cient use of the available data, 9-fold cross-validation was performed where 1
fold was used as a test set, 1 fold for validation and remaining 7 folds were used
as training data. The learning rate was set to 0.008 and Adam [8] optimizer
was used. The architecture is shown in Fig. 2 where number of feature maps of
the model were chosen according to the GPU RAM. Total number of trainable
parameters were 20M which is less as compared to a fully connected network and
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fully convolutional network [11] of similar size. U-Net introduces skip connec-
tions which enhances learning by merging various lower layer features to higher
layers. The model was trained for 10 epochs.

The proposed method is evaluated against another comparative method by
Li et al. [10] that models the relationship between MRI and PET in a local, non-
linear fashion. Firstly, preprocessed images were used to extract Gray Matter
scans. Then, 3D patches from these images of size 15 × 15 × 15 were extracted
and the corresponding patch for the PET image of size 3×3×3 is reconstructed.
The method published in [10] was replicated to the maximum extent possible
based on details provided in the paper, as the code is not available. All the
parameters were kept as mentioned in the paper. The following section depicts
the efficacy of the method by evaluating estimated PET scans both quantita-
tively and qualitatively. Quantitative evaluation is done using three different
metrics based on correlation, perception and pixel intensities.

3.1 Mean Absolute Error (MAE)

MAE is a commonly used metric for any reconstruction problem. It gives us the
average absolute difference between the estimated image and the ground truth
intensity values. It is computed as follows:

MAE =
∑n

i=1 |yi − xi|
n

(2)

xi and yi are the intensity values of the pixels of estimated and actual PET.

3.2 Peak Signal-to-Noise Ratio (PSNR)

PSNR is mostly used as a quality measurement between two images. PSNR
represents a measure of peak error. It is computed as follows:

PSNR = 10 log10

(
MAX2

MSE

)
(3)

where MAX is the maximum possible intensity of the image and MSE is the
mean squared error between the estimated and ground truth PET image.

3.3 Structure Similarity Index (SSIM)

Unlike MAE which measures the quality of an image based on pixel intensities,
SSIM compares the similarity in structures of the two images. It is computed
using the following equation:

SSIM(x, y) =
(2μxμy + C1) + (2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(4)

where x is the estimated PET and y is the ground truth PET. μi is the mean
of image i, σi is the variance of image i and σxy is the co-variance of images x
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Table 1. Comparison of [10] with our proposed global approach for estimation of PET
from MRI. For SSIM and PSNR metrics, the higher the value, better the estimation
and for MAE metric, the lower the value, better the estimation.

Method SSIM MAE PSNR

Li et al. [10] 0.5419 ± 0.044 0.0862 ± 0.0003 58.29 ± 1.337

Proposed method 0.8211 ± 0.015 0.0422 ± 0.006 68.88 ± 1.010

and y. C1 and C2 are empirically found constants in order to best perceive the
structure of the estimated PET with respect to the ground truth.

Table 1 shows the performance of both the approaches using all three quanti-
tative metrics. The high PSNR (68.88) and SSIM (0.82) and low MAE (0.0422)
indicate that our proposed global method outperforms the local approach in all
metrics, demonstrating the superiority of the architecture.

For a more qualitative analysis of the results, samples of PET scans estimated
by both the approaches along with original PET scans are displayed in Fig. 3.
The results clearly illustrate higher level of similarity between the PET scans
estimated by the proposed method and their respective ground truth scans as
compared to the alternative. The images further corroborate numerical results
presented above and demonstrate the potential of the proposed approach to learn
features corresponding to Normals and AD.

3.4 Impact of the Proposed Method on Alzheimer’s Classification

To evaluate the effectiveness of the estimated PET scans, we performed classifi-
cation of Alzheimer’s Disease on the ADNI [13] dataset using reconstructed data.
As 9 fold cross-validation was used as part of the cross-modality estimation pro-
cedure, the same setting was used to perform the classification task. To ensure
consistency with [10], we used �2-norm regularized logistic regression classifiers
for both methods. The results of classification task using both the patch based
method [10] and the proposed U-Net based method are shown in Table 2. As
expected, we observe that the joint classification accuracy of MRI+Synthesized
PET results in higher accuracy than stand alone MRI based classification due
to the complementary nature of the features extracted and utilized from both
modalities. The joint accuracy for [10] is less than that of only MRI might be
due to considering only local correlations to generate the PET which is actually
misclassifying the image. A paired sample t-test revealed marginally significant
improvement (p = 0.06) in classification accuracy using MRI and synthesized
PET images.

4 Discussion

We hypothesized that the correlation present between MRI and PET images is
not local [12]. Ideally, a fully connected network (FCN) would be more appro-
priate to model global correlations between MRI and PET scans. However, due
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Table 2. Accuracies on the binary classification task of AD vs Normal by the proposed
method and the patch based method [10]. The second and the third columns (MRI &
PET) have the same set of values as they are the classification accuracies on the original
data and do not depend upon the method.

Method MRI PET PET-Synthesis MRI+PET-Synthesis

Li et al. [10] 70.18 ± 8.37 80.80 ± 7.95 60.33 ± 6.14 65.34 ± 5.43

Proposed method 70.18 ± 8.37 80.80 ± 7.95 69.95 ± 5.59 74.43 ± 3.32

Fig. 3. Qualitative comparison of predicted PET scans with their corresponding true
scans for 2 subjects – one from each group: Normal and AD in axial (right) and saggital
views (left).

to large number of parameters and limited number of data samples, FCN pro-
duced relatively smoother estimates of PET scans. We initially experimented
by training a supervised autoencoder architecture having two layers with each
hidden layer having 500 and 300 hidden units. The number of parameters in this
architecture in first layer itself rise to 131 million which increases the chances
of overfitting given such less number of samples in medical images. With simple
convolutional neural network the number of parameters reduces but the context
it captures remains local. But U-Net is a convolutional encoder-decoder archi-
tecture with skip connections which helps us capture global correlations while
keeping the number of parameters low.

We used binary crossentropy as loss function to train models instead of mean
squared error (MSE) as it was generating jittery outputs, whereas the outputs
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were smooth in the former case. The choice of classifier was made to be consistent
with [10], which could be improved by using deep learning based classifiers.

The estimated PET scans were evaluated against three global metrics as
discussed above. Additionally, we tried to evaluate the quality of PET scans for
few regions-of-interests (ROI) locally responsible for AD. For this, we parcellated
estimated PET into 120 regions using AAL [16]. From these regions, we select few
important regions highlighting AD as described in [5]. Table 3 highlights mean
MAE and PSNR values for these regions. The range of MAE and PSNR values
across all regions is similar, indicating the quality of generated scans locally.

Table 3. Quantitative evaluation of metrics for few ROIs significant for Alzhiemer’s

Name MAE PSNR

Hippocampus 0.22 60.30

Para Hippocampus 0.22 60.39

Posterior Cingulate 0.21 60.58

Precuneus 0.18 61.52

Anterior Cingulate 0.16 61.14

Orbito Frontal 0.18 61.33

5 Conclusion

We have explored U-Net architecture to estimate PET modality which when
used alongwith MRI improves classification accuracy over the state-of-the-art.
A 3D architecture which takes full MRI volume as an input and generates a cor-
responding PET scan in one pass is used to perform the cross-modal estimation.
The presence of skip connections allows the model to capture both non-linear
and non-local correlations in an encoder-decoder setting. We have demonstrated
the applicability of generated scans via performing multi-modality classification
using both original MR and synthetic PET scan. The increased joint classifica-
tion accuracies imply that synthetic data can be used in cases where capturing
PET scans is not feasible. It can also be used as a missing data method for
estimating PET scans that have been omitted for various reasons. We plan to
extend this by making estimations more strong using adversarial training with
the same U-Net architecture.
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