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Abstract. Machine learning applied to medical imaging for lesions detection,
such as cerebral microbleeds (CMB) from Magnetic Resonance Imaging (MRI),
is challenged by the relatively small datasets available for which only subjective
and tedious visual reading is available, and by the low prevalence of lesions (a
few in *10% of a typical elderly cohort) resulting in unbalanced classes.
Moreover, the lack of actual ground truth might limit the performance of any
machine learning method to that of human performance. Yet, the automatic
identification of those lesions is relevant to quantify cerebrovascular burden
associated with dementia, such as identifying co-morbidity for Alzheimer’s
disease. In this paper, we investigated a novel approach consisting of simulating
synthetic CMB on SWI MRI scans from healthy individuals to create a large and
well characterized training dataset, as a data augmentation strategy. Firstly, we
characterized actual CMBs from MRI SWI scans and designed a method to
create realistic synthetic CMBs whose location, shape, appearance, and size are
similar to actual CMBs. We then tested a supervised neural network classifier
using various combinations of actual CMB and synthetic CMBs for training.
Augmenting data with synthetic CMBs resulted in a large improvement over
training on only actual CMBs only when tested on unseen lesions, and provided
better results than other standard data augmentation approaches. Our results
suggest that data augmentation using synthetic lesions can address the lack of
ground truth and low prevalence limitations for medical imaging analysis
allowing the deployment of data hungry supervised learning techniques such as
deep learning.
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1 Introduction

Cerebral microbleeds (CMBs) are hemosiderin deposit caused by structural abnor-
malities of the blood vessels [1]. They are prevalent in people suffering from cognitive
and cerebrovascular disease such as stroke and Alzheimer’s disease. They are also
asymptomatic and present in cognitively normal individuals. The detection of CMB
from MRI is thus clinically important to assess cerebrovascular burden.

Magnetic susceptibility is affected by the presence of CMB in brain parenchyma [2],
and susceptibility-weighted imaging (SWI) [2] has been shown to image CMB with
excellent sensitivity, limited mostly by the imaging resolution (typically 1 � 1 � 2
mm3). In SWI scans, CMBs appear as small spherical hypo-intense areas in tissue with a
similar appearance than the numerous blood vessels, also seen in SWI, when observed in
cross-section. For this reason, the clinical observation of CMB, often based on the
Microbleed Anatomical Rating Scale (MARS) [3], is tedious and time-consuming
because of the large number of similar features from blood vessels. Indeed, CMB
mimics include vessel cross section, calcification, and cavernous malformation on SWI.

Automated methods are also challenged by the large number of mimics resulting in
numerous false positives while there is a relatively small number of true positives since
the prevalence is about a few CMB in 10% of asymptomatic elderly subjects [4]. This
creates a large unbalance classes hampering supervised training, further compounded
by the limited size of datasets where ground truth (human expert annotation) is
available. To address this problem, data augmentation methods are often used [5].
Synthetic Minority Oversampling Technique SMOTE [5], is one strategy to balance the
classes by generating new pseudo TP (true positives) instances from the existing
minority TP cases. In this paper, we investigate data augmentation by generating
synthetic CMBs. We compare this new approach to SMOTE and the other widely used
data augmentation method using rotation and translation. We describe the method to
create realistic synthetic CMB and demonstrate that performance of a neural network
classifier can be improved by transferring the learning from the synthetic data to real
clinical data. We do not aim at presenting a new classifier, but at demonstrating that
using synthetic lesions can improve the performance of supervised learning. We use in
this paper a simple feed forward Artificial Neural Network as a case example.

2 Method

2.1 Dataset

Data are from the Australian Imaging Biomarkers & Lifestyle (AIBL). We used 64
scans from 39 participants (including some repeat scans at 18 months interval). There
were 24 patients clinically diagnosed with Alzheimer’s disease (AD), 34 subjects with
mild cognitive impairment (MCI) and 6 healthy controls (HC), with an average age of
79.21, 77.74 and 79.98, respectively. The scans comprised 27 females and 37 males.
All subjects underwent an anatomical T1-weighted (T1 W) and a SWI acquisitions on a
3T Siemens TRIO scanner. SWI was reconstructed online using the scanner system
(software VB17). The 3D SWI parameters were: 0.93 � 0.93 mm2 in-plane resolution
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and 1.75 mm slice thickness, repetition time/echo time of 27/20 ms, and flip angle 20°.
T1 W images were acquired using a standard 3D magnetization-prepared rapid gra-
dient echo (MPRAGE) sequence with in-plane resolution 1.0 � 1.0 mm2, slice
thickness 1.2 mm, repetition-time/echo-time/TI = 2.300/2.98/900, flip angle 9°, field of
view 240 � 256, and 160 slices. Scans were reviewed by two clinical experts and
marked using the MARS criteria as definite and possible.

2.2 Preprocessing

For all the scans, N4 bias field correction technique [6], skull-stripping masking to
exclude non-brain tissues [4], and histogram matching were applied before any pro-
cessing. All SWI images were normalized between [0 1]. Brain tissues were segmented
from the T1W into gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) using posterior probability classification after fitting a mixture of Gaussian
distribution to the histogram using the expectation-minimization method. A final region
of interest (ROI) mask was built by merging the WM and GM voxels.

2.3 Features of Actual CMBs

From the analysis of the SWI datasets, CMBs were characterized using four parame-
ters: size, shape, intensity, and location. In our dataset, the CMBs were uniformly
located in the WM, GM tissues, and therefore location of synthetic lesions was uni-
formly distributed in the corresponding mask.

CMB Intensity: It was observed that large CMB intensity had a minimum value of 0,
while the intensity of smaller size lesions became closer to tissue intensity. Figure 1 top
left panel shows the minimum value of expert identified CMB. We assumed that this
effect was entirely due to partial volume effect and that the minimum intensity value of
a CMB is 0. This is consistent with SWI processing where the square of the high
frequency filtered phase multiplies the signal magnitude, resulting in 0 intensity.

CMB Size: 11 � 11 � 11 patches with definite CMB at their center were extracted
from the 64 SWI images, resulting in 144 patches making up the TP class. For each
patch, a mixture of distributions was fitted using the expectation minimization algo-
rithm: a Gaussian to model brain tissues and a uniform distribution to model outliers
due to partial volume effect, and low intensity pixels from vessels and CMBs.
A maximum a posterior classification was performed to create a mask of the CMB in
the patch (cleaned using connected components). The mean of the Gaussian was
assumed to be the tissue mean intensity while an intensity of zero was assumed to be
the intensity of the CMB. Fractional CMB content was estimated for each pixel of the
CMB mask by using a standard partial volume model. Eventually, fractions of CMB
for each pixel were summed up to estimate the volume of each CMB as shown in
Fig. 1.
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2.4 Generation of Synthetic CMBs

It is our goal to create realistic synthetic CMB (sCMB), which should thus have the
same characteristics as the real ones defined in the previous section.

A 3D Gaussian function was generated on a 110 � 110 � 110 patch (ratio
matching the SWI resolution ratio). Its location was the center of the middle pixel of the
patch with added uniform random noise in all three axis within [±15,±15,±15] voxels.
In order to simulate variation around a spherical shape, given a spherical volume, two of
the 3D Gaussian standard deviations were multiplied by a random number between 0.5
and 0.9, while the third one was defined so that the overall volume was conserved. The
shape was adjusted using the 3D Gaussian standard deviations to match the actual SWI
resolution ratio. Random variation of the three standard deviation values of the 3D
Gaussian allowed random variation of shape around a mean ellipsoid while keeping the
same overall volume. The volume of the sCMB was randomly sampled from a smooth
approximation of the size distribution of real CMBs (shown in Fig. 1 top left panel).
Uniform random rotation was also added on the three axis within ±30°.

The Gaussian intensity profile was thresholded at half maximum to create a mask
simulating a high resolution sCMB (0 within the mask and 1 outside). The patch was
then down sampled to 11 � 11 � 11 to simulate partial volume effect (values ranging
between 0 and 1 to simulate PVE). The resulting patches were then multiplied with
patches extracted from the SWI images without any CMB, whose selection is explained
in the next section. As a results, a synthetic TP patch (sTP) could be created for which
the lesion size and appearance could be computed in the same way as actual CMB
patches as explained in the previous section and displayed in Fig. 1 right panels.

Fig. 1. The size distribution (top panels) and minimum intensity (bottom panels) for the real
CMB in blue (left panels) and the generated synthetic CMB in red (right panels). The minimum
intensities are comparable and entirely due to partial volume effect in the synthetic case. (Color
figure online)
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2.5 Patch Extraction

From the SWI dataset, patches were extracted and assigned to two categories:
(1) Patches with real CMB defined as definite by the two experts (TP), (2) Patches with
no actual CMB (neither definite nor possible). The second type was further divided into
those patches containing either blood vessels or some CSF (seen as dark and possibly
confounding CMB), and patches containing mostly GM or WM tissues. They were
labeled as true negative (TN) with and without blood vessels. Vessels were detected
using the Radial Symmetry Transform RST [7]. In order to create a patch with a
synthetic CMB, the 11 � 11 � 11 mask described in the previous section was mul-
tiplied with a patch from the TN class, creating a synthetic TP patch (sTP). We selected
the TN patches so that the proportion of sTP with and without vessels was 50%/50%.

2.6 Experimental Method

We used a 2-fold with repeated 25 random sub-sampling validation: for each of the 25
sampling, 19 random subjects (out of 39 subjects) were set aside as the testing data,
while the remaining were used for training. This resulted in a total number of TP
(actual CMB patches) to be around 70 for testing and 70 for training (actual number
depends on the subjects selected). The description of the training strategy for the 8
models can be found in Table 1. The concatenation of the results for the 25 sampling
for each model was used to smooth the ROC curves.

2.7 Classifier

To test our hypothesis that synthetic lesion would improve the performance of a
classifier, we used a single-hidden layer feed-forward neural-network [8], trained with
scaled conjugate gradient [9]. This ANN was implemented with Matlab. The activation
function in the hidden layer was Leaky ReLU [10] with 55 neurons. The activation
function of the output unit was the logistic sigmoid (LOSI) [11]. The number of epochs
was 2000, the mean square error was used as the cost function.

Table 1. Models considered in this study with approximate number of patches in each class.

Model # of TP # of sTP # of TN Comment

M1 70 0 140 Train on actual only
M2 70 0 1400 M1 but highly unbalanced
M3 70 1200 1400 Train on actual + synthetic
M4 0 1200 1400 Train only on Synthetic
M5 0 70 140 Train on synthetic with same size as M1
M6 70 1200 1400 Train on augmented data
M7 70 600 + 600 1400 Train on synthetic + augmented data
M8 70 1200 1400 Train on augmented data by SMOTE [5]
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3 Results and Discussion

3.1 Synthetic CMB Generation

Synthetic CMB could be created with no discernable differences from actual lesions.
The size and intensity were similar between actual and synthetic lesions as shown in
Fig. 1. The location of synthetic samples was uniform in the GM and WM tissues as
observed for real ones. Figure 2 shows examples of axial sections from the
11 � 11 � 11 patches.

3.2 Results of CMB Classification Using ANN

Results for the ANN classification on the testing datasets is reported in Table 2. We
show the area under ROC (AUR), mean sensitivity, specificity and accuracy along with
the standard deviation over the 25 sampling 2-fold cross validation design. Model 2
would not converge to any meaningful results due to the unbalanced classes and is
omitted here. Figure 3 shows the ROC curve for all the models. The results using
SMOTE (model 8) were the lowest of the three data augmentation methods. Using
synthetic data provided good results, and the best model was the one training on
synthetic data alone. Merging synthetic with the TP class had also good results close to
training on synthetic data alone. Using standard geometric data augmentation improved
performance but not as much strategy involving using synthetic data.

Real CMB (TP) Synthetic CMB (sTP) TN with vessel TN without vessel 

Fig. 2. Typical examples of axial section for the different classes. Note that the sCMB is not
centered (second left panel), similar to the real one (left panel), because we added random
variation in location and shape.

Table 2. Performance of the models on the test datasets. Values are averages ± standard
deviation over the 25 draws from averaging the outputs. Bold shows the best performance
models.

Model Accuracy Sensitivity Specificity AUR

M1 0.88 ± 0.022 0.87 ± 0.028 0.88 ± 0.030 0.93 ± 0.020
M3 0.91 – 0.021 0.90 – 0.035 0.91 – 0.026 0.95 – 0.018
M4 0.90 ± 0.021 0.90 – 0.029 0.91 – 0.030 0.95 – 0.018
M5 0.83 ± 0.033 0.85 ± 0.037 0.82 ± 0.050 0.89 ± 0.024
M6 0.88 ± 0.014 0.87 ± 0.035 0.88 ± 0.024 0.93 ± 0.012
M7 0.90 ± 0.019 0.89 ± 0.034 0.91 – 0.026 0.95 – 0.013
M8 0.85 ± 0.020 0.87 ± 0.032 0.84 ± 0.031 0.91 ± 0.016
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3.3 Discussion

Our results suggest that augmenting data with synthetic lesions could help increasing
supervised classifier performance to detect microbleeds in MRI SWI. The best results
were obtained by training on synthetic data alone even though the performance were
measured on real data.

Our proposed approach addresses one critical issue for lesion detection task: when
the prevalence of a lesion type is low, a very small number of TP are available for
training supervised classifier limiting the complexity of the possible models to con-
sider. Another consequence is the class unbalanced between the positive and negative.
Indeed, the naïve approach of training the ANN on very unbalanced data (1:10) failed
to produce any meaningful results. Adding sCMB allowed to balance the classes and
increased the number of examples resulting in much improved performance.

Our proposed approach is very dependent on how realistic the synthetic lesions are
created. We described a simple method based on a Gaussian profile that is added to the
magnitude SWI images (magnitude multiplied by filtered phase). A better characteri-
zation of actual microbleeds using high resolution MRI, such as 7T, could help
improve the generation of simulated lesions. In addition, adding the synthetic lesions
on the complex image, before SWI processing, might improve the realism of the
synthetic data.

Fig. 3. ROC curve for the different models using a 2-fold with repeated 25 random sub-
sampling validation design.
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Despite those limitations, augmenting medical data using synthetic lesions could
allow to use complex classifiers, such as deep learning network, with large number of
parameters since arbitrary large training datasets could be created along with the perfect
ground truth necessary for supervised learning. Of course that approach is limited by
how close the synthetic ground truth is from the actual and elusive ground truth. This is
tantamount to converting human expertise (a priori knowledge about what lesions look
like) into data that is then transfer through learning into the weights of a classifier.
More research on different applications would inform whether our proposed approach
could allow automated methods to push performance beyond that of experts.
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