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Abstract. Motion artifact compensation of the coronary artery in com-
puted tomography (CT) is required to quantify the risk of coronary
artery disease more accurately. We present a novel method based on
deep learning for motion artifact compensation in coronary CT angiog-
raphy (CCTA). The ground-truth, i.e., coronary artery without motion,
was synthesized using full-phase four-dimensional (4D) CT by apply-
ing style-transfer method because it is medically impossible to obtain in
practice. The network for motion artifact compensation based on very
deep convolutional neural network (CNN) is trained using the synthe-
sized ground-truth. An observer study was performed for the evaluation
of the proposed method. The motion artifacts were markedly reduced
and boundaries of the coronary artery were much sharper than before
applying the proposed method, with a strong inter-observer agreement
(kappa = 0.78).
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1 Introduction

Coronary artery disease (CAD), also known as ischemic heart disease, is the
leading cause of death globally [7]. Recently, non-invasive coronary computed
tomography angiography (CCTA) has been widely adopted. If CCTA is acquired
when the heart is beating, motion artifacts can inevitably be caused. Therefore,
motion artifact compensation is required to quantify the severity of CAD more
accurately.
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Fig. 1. Appearance of the motion artifacts of a coronary artery in different phases of
same patient’s 4D CT according to a 5-point Likert scale, described in Sect. 3.2 (a)
completely unreadable, (b) significant motion artifacts, (c) apparent motion artifacts,
(d) minor motion artifacts, (e) no motion artifacts

To solve this problem, prospective ECG-gating or drugs (e.g., beta-blockers)
can be used. The former enables data acquisition when the heart is moving
as quiescently as possible, and the latter enables the patient heart rate to be
reduced. Nonetheless, motion artifacts can occur if the heart rate is irregular or
due to the temporal resolution of CT.

Various approaches based on image processing have been proposed to solve
this issue. Several methods were proposed that first perform coronary artery
motion estimation, after which the cardiac CT images are obtained using motion
compensated reconstruction [1,9,14,16]. However, the motion artifacts are likely
to degrade the performance of motion estimation, ultimately leading to the
degradation of motion compensation as well.

The advancement of deep learning has caused revolutionary improvements
across many different disciplines [3,8,13]. It is reasonable to assume that a physi-
cian could estimate the image without the motion artifacts more accurately with
more experience. Based on this assumption, together with the success of deep
learning methods, we hypothesized that deep learning can be used for motion
artifact compensation as well.

In this work, we approach the issue of reducing motion artifacts in CCTA by
using deep learning, similar to denoising [17] or super-resolution methods [11]
that have recently been shown successful. To apply deep learning to coronary
artery motion compensation, ground-truth (GT) data are required. However, the
image of a coronary artery without motion in a patient cannot be determined.
That is, it is medically impossible to obtain exactly the corresponding coronary
CT images with and without motion artifacts.

Our core idea is to use a style transfer method on the image patches from four-
dimensional (4D) CT images, containing phases with large and small amounts
of motion artifacts (Fig. 1), to generate a synthetic ground truth, which we term
SynGT. We apply style transfer, instead of just using only the patches directly,
owing to the local deformations that occur from the heartbeats. Our aim is to
suppress the effect of genuine appearance change and isolate only the effect of
motion artifacts. Using the SynGT, we can subsequently learn to generate images
with reduced motion artifacts from the corresponding training input images.
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Fig. 2. Workflow of the proposed method. In step 1, generate synthetic motion com-
pensated patch (SynGT) using style-transfer method. In step 2, training the motion
artifact compensation network (MAC Net) using SynGT. The detailed descriptions of
step 1 and step 2 are found in Sects. 2.2 and 2.3, respectively.

The primary contributions of our work are summarized as follows, (i) we
applied the style transfer method in order to synthesize the motion compen-
sated ground truth (SynGT) (Step1 in Fig. 2), (ii) trained the motion artifact
compensation network, which we termed MAC Net, by utilizing the SynGT
(Step2 in Fig. 2), and (iii) performed an observer study that scores the degree
of motion artifacts before and after applying the proposed method.

Section 2 examines the proposed method and the details are presented in each
subsection. Section 3 shows the dataset and experimental results of the proposed
method. In Sect. 4, we present the conclusions and discussions.

2 Methods

2.1 Extraction of Corresponding Coronary Patches from 4D CT

We used 4D CT images which are acquired by retrospective gating using a dual
source CT scanner (SOMATOM Definition Flash, Siemens). All raw data were
reconstructed 0%–90% in 10% increments of the R-R interval.

Herein, we specifically focus only on the middle of the right coronary artery
(mid-RCA), which generally has the most motion, as the region of interest when
we trained the motion artifact compensation (MAC) network. Given the tempo-
rally sampled three-dimensional (3D) CT volumes, the mid-RCA was manually
annotated by the experts in each volume using a commercial coronary analysis
software (QAngioCT, Medis Medical Imaging Systems, Leiden, Netherlands).
Here, the 1st right ventricle branch and acute marginal branch are defined as
the start point and the end point, respectively.

The mid-RCA centerline Cφ of a 3D volume at phase φ is represented as
a discretized set of ordered 3D coordinates Cφ =

{
cφ
i |0 ≤ i ≤ Nφ

c − 1
}

, where

cφ
i denotes the ith 3D point coordinate, among a total number of Nφ

c , of Cφ.
The exact centerline is approximated as a piecewise linear function between
the points in Cφ. Thus, the entire length of the mid-RCA centerline is defined
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Fig. 3. Determining positions and normals for corresponding patches of mid-RCA in
3D CT volumes at different temporal phases, included within the full-phase 4D CT vol-
umes. The centerlines of the mid-RCA, including the start and end points are manually
annotated in full-phase volumes.

as the sum of all distances between subsequent point pairs, and denoted as
lφ =

∑i<N−1
i=0 ||cφ

i+1 − cφ
i ||2.

To extract the corresponding patches on Cφ, the corresponding points must
first be determined. We assume that the start and end points for all φ will
correspond because they correspond to the same anatomical landmark. A fixed
number of M equidistant points Vφ =

{
qφ
j |0 ≤ j ≤ M − 1

}
each spaced lφ

M are

sampled between the start and end points of Cφ. Because the mid-RCA center-
line is approximated as a piecewise linear function, we applied interpolation to
compute the exact equidistant point coordinate. Finally, we define the normal
directions nφ

j for the planar patches centered at each qφ
j as the tangential direc-

tion of Cφ at qφ
j . Figure 3 visualizes this process of determining the corresponding

points along 3D CT volumes at different temporal phases.
The corresponding patches P =

{
Pφ

j |0 ≤ j ≤ M − 1
}

are extracted by sam-

pling the voxel intensities on an R×R discrete grid centered at qφ
i with normal nφ

j

within the corresponding 3D CT volume. To align the spatial distribution of the
grid points physically, we constructed a two-dimensional grid (on the xy-plane as
reference) with 3D coordinates considering the physical dimensions of the CT,
and applied translation based on the center point, and rotation based on the
normal direction to obtain the projected grid coordinates. Because these coordi-
nates are not integers, bicubic interpolation is applied when assigning intensity
values to each pixel in the extracted patch.

2.2 Generating Synthetic Motion Compensated Patches Using
Cross-Phase Style-Transfer

The motion of the heartbeat causes differences in its local appearance. How-
ever, we would like to obtain the corresponding patch with the identical local
appearance but without motion artifacts because we would like to train a convo-
lutional neural network (CNN) to remove only the artifacts. As this is clinically
unattainable, we aim to synthesize this same-phase-no-artifact patch, P̃φ

j , using
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style transfer to source patch Pφ
j with a different-phase-no-artifact patch as the

target Pφ�
j , a process which we term cross-phase style-transfer. Here, φ� denotes

the phase within the heartbeat when the motion is the slowest, resulting in the
least amount of motion artifacts.

In the proposed framework, we applied a recent method for style transfer
using deep neural networks [5], often called the neural style transfer method,
in our framework. The core of the method comprises the following components.
First, a CNN, particularly the VGG network [15] pretrained on the ImageNet
database [4], is used to compute local image features that are subsequently
defined as the numerical representation of the content. If we denote the ten-
sor of the CNN features at layer l as F1

x and F1
c for the synthesized image Ix

and content reference image Ic , respectively, the loss function for the content is
defined as

Lcontent (Ix , Ic) =
1
2
||Ix − Ic ||22. (1)

Next, the numerical representation of the style is defined using the Gram matrix
Gl, where each element is the inner product between different CNN features at
layer l, as

Gl
ij = Fl

i · Fl
j , (2)

where Gl
ij denotes the element at row i, column j of Gl. Fl

i and Fl
j denote the

ith and jth features, respectively corresponding to the ith and jth convolutional
kernels, respectively, at layer l. The loss function for style is subsequently defined
as

Lstyle (Ix , Is) =
1

2N l
x
2 × 2N l

s
2 ||Gl

x − Gl
s||22, (3)

where Gl
x and Gl

s are the Gram matrices, and N l
x and N l

s are the number of
features at layer l, for Ix and style-reference image Is , respectively. Finally, Ix

is determined by using a gradient descent to minimize the balanced loss, defined
as

Ltotal (Ix , Ic , Is) = αLcontent (Ix , Ic) + βLstyle (Ix , Is) , (4)

where α and β are coefficients to balance the effect between the content and style
loss terms. We note that CNN is just applied as a tool to compute the features,
and that optimization of Eq. 4 is for modifying the input image so that its style
resembles that of the target image, not for learning parameters of the CNN.

From the review above, P̃φ
j , Pφ

j , and Pφ�
j correspond to Ix , Ic , and Is ,

respectively. While the phase φ� with the least amount of motion is determined
manually, the patches from all other phases φ can be assigned as the source, i.e.,
the reference patch for content Pφ

j .

2.3 Training and Applying the Motion Artifact Compensation
Network

We adopted the very deep CNN for super-resolution (VDSR) network [11], orig-
inally applied to super-resolution, in our problem of motion artifact compensa-
tion. We chose VDSR because (1) our problem is primarily a noise reduction
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Fig. 4. Architecture of the MAC network, based on the VDSR network [11]. A pair
of convolutional layers and an activation function are cascaded repeatedly. The last
convolutional layer denotes a learned residual image. A single skip-connection from the
input to output is applied.

problem, and noise reduction is similar to achieving super-resolution, (2) the
input is upsampled such that patch sizes of the input and output are assumed
to be the same for the VDSR as our configuration, and (3) it shows good per-
formance and fast convergence during training.

The good performance is primarily due to the deep structure of the network,
which combines the very deep CNN model of [15] together with the residual
learning of [6]. Meanwhile skip connections were added at every other convolu-
tional layer in [6], and only a single skip-connection from the input to output is
created in the VDSR network. This connection learns the difference between the
input and output and prevents the vanishing gradient problem. To expedite the
training convergence, a high learning rate is used together with an adjustable
gradient clipping scheme where the gradients are clipped to

[− θ
γ , θ

γ

]
to boost the

convergence, where γ denotes the current learning rate and θ is the parameter
for gradient clipping.

The structure of the MAC network follows the VDSR network, which com-
prises 20 convolutional layers and 19 ReLU nonlinear activation functions
(Fig. 4). We used 64 filters of the size 3 × 3 for each convolutional layer. For the
corresponding cross-phase style-transferred patch P̃φ

j is assigned as the GT out-
put for the input patch Pφ

j , the loss function is defined as the mean squared error
1
2 ||(P̃φ

j − Pφ
j ) − f(Pφ

j )||2, where f denotes the network prediction of the resid-
ual between P̃φ

j and Pφ
j . Subsequently, the final result of the network becomes

f(Pφ
j ) + Pφ

j .
We used the Caffe [10] framework for our implementation. The hyperparam-

eters for training are set as follows: batch size of 64, learning rate of 0.0001, and
weight decay of 0.0001. The optimizer ‘Adam’ [12] is used.

The MAC network can be applied as follows. We assumed that a 3D CT vol-
ume of the coronary artery corrupted by motion artifacts is provided. From this
volume, we extract the centerline of the coronary artery, sample M equidistant
3D point coordinates, and construct M patches, each centered at these points
with normal direction as the centerline tangent direction, similarly as described
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in Sect. 2.1. All patches are fed into the trained MAC network, separately, where
the output patches should have reduced motion artifacts.

3 Experimental Results

3.1 Datasets

In our experiments, we sampled a different number of phases from 100 4D CT
volumes because some 3D volumes were excluded where the coronary artery
could not be manually identified owing to extremely severe motion artifacts. A
total of 5,868 mid-RCA patches were constructed. After a data augmentation
process, including vertical and horizontal flips and rotation, the final training
set contained a total of 35, 208 patch pairs. Each patch was constructed to be of
size 60 × 60 when sampled from the 3D volume.

For validation, 2547 mid-RCA patches were extracted from 40 4D CT vol-
umes and a total of 15,282 patches were constructed after a data augmentation.
For testing, a total of 100 patches, extracted from 10 4D CT volumes, were used.

3.2 Qualitative Evaluation

The outputs of the trained MAC Net are presented in Fig. 5. After applying the
proposed method, the edge of the coronary artery is visibly sharper than before.
In addition, Fig. 6 shows that the proposed method can compensate the motion
artifacts when the coronary artery diverges or contains plaques.

Two experienced readers evaluated the degree of motion artifacts based on
a 5-point Likert scale as follows [2]: 1 = completely unreadable; 2 = significant
motion; 3 = apparent motion; 4 = minor motion; 5 = no motion. The categorical
variables are presented as the ratio of frequencies (see Table 1). The proportion of
images presented with completely unreadable, significant, and apparent motions
(Likert scale 1, 2, and 3) were 98.5% previously, and decreased to 35% for the
MAC Net.

The mean score of the motion artifact is described as mean ± standard devia-
tion. It was significantly improved from 1.43 (±0.66) to 3.80 (±0.87). (p < 0.001).
The inter-observer agreement was calculated with the kappa (κ) statistics for the
motion score and it shows a strong agreement: Before (κ = 0.85; 95% CI 0.76–
0.95) and After (κ = 0.70; 95% CI 0.61–0.81).

4 Discussion

We proposed a motion compensation method of coronary artery in CT images
based on deep learning. The key idea of the proposed method is to generate
the synthetic motion compensated ground-truth by adopting the neural style-
transfer method [5] using full-phase 4D CT images. It enables the patch with
motion artifacts to mimic the style of the patches with small artifacts while
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Table 1. Motion artifact before and after applying proposed method

Before After p-value

Likert scale <0.001

1 = Completely unreadable 66.5% 2.5%

2 = Significant motion 26% 2.5%

3 = Apparent motion 6% 30%

4 = Minor motion 1.5% 41.5%

5 = No motion 0% 23.5%

Score <0.001

Mean 1.43 3.80

Standard deviation ±0.66 ±0.87

Interobserver agreement

Kappa value 0.85 0.70

Standard error ±0.05 ±0.05

95% CI 0.76–0.95 0.61–0.81

retaining its content. The results of the proposed method improved qualitative
readability scores from 1.43 to 3.80 on a 5-point Likert score.

While the proposed method showed improved results, in terms of the Likert
score, for most cases, there were rare cases where there was no change in the
score, as shown in Fig. 7. We assume that motion artifacts are too severe, or
the coronary artery is too close to the right atrium or the right ventricle to
distinguish its boundary from them. We note that there were no cases where the
score decreased, so while there is a possibility that the proposed method does
no good, there is very little possibility that it will do harm.

For future work, we intend to address the re-projection of the output patches
into the original 3D CT volume and volumetric interpolation. This process is
required to analyze the coronary artery in commercial software in practice. Fur-
ther, we expect to quantify the motion artifacts based on the metric system and
compare the performances before and after applying the proposed method. We
also hope to use the quantitative measurements to perform comparative anal-
ysis with previous methods based on retrospective motion compensation based
on motion estimation.



108 S. Jung et al.

Fig. 5. Qualitative results of the test datasets. Left and right in each dataset mean
before and after applying the proposed method, respectively. Expert evaluated scores
based on 5-point Likert scale [2] and case number are presented above each dataset.

Fig. 6. Qualitative results of specific cases that distinguish well the primary vessel
from the branch. The third sample pair also shows compensation for the artery plaque.
Left and right in each dataset mean before and after applying the proposed method,
respectively. Expert evaluated scores and case number are presented above.
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Fig. 7. Qualitative results of specific cases with little changes in motion artifacts. Left
and right in each dataset mean before and after applying the proposed method, respec-
tively. Expert evaluated scores and case number are presented above.
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