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Abstract. Data diversity is critical to success when training deep learn-
ing models. Medical imaging data sets are often imbalanced as pathologic
findings are generally rare, which introduces significant challenges when
training deep learning models. In this work, we propose a method to
generate synthetic abnormal MRI images with brain tumors by training
a generative adversarial network using two publicly available data sets
of brain MRI. We demonstrate two unique benefits that the synthetic
images provide. First, we illustrate improved performance on tumor seg-
mentation by leveraging the synthetic images as a form of data aug-
mentation. Second, we demonstrate the value of generative models as an
anonymization tool, achieving comparable tumor segmentation results
when trained on the synthetic data versus when trained on real sub-
ject data. Together, these results offer a potential solution to two of the
largest challenges facing machine learning in medical imaging, namely
the small incidence of pathological findings, and the restrictions around
sharing of patient data.
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1 Introduction

It is widely known that sufficient data volume is necessary for training a success-
ful machine learning algorithm [6] for medical image analysis. Data with high
class imbalance or of insufficient variability [18] leads to poor classification per-
formance. This often proves to be problematic in the field of medical imaging
where abnormal findings are by definition uncommon. Moreover, in the case of
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image segmentation tasks, the time required to manually annotate volumetric
data only exacerbates this disparity; manually segmenting an abnormality in
three dimensions can require upwards of fifteen minutes per study making it
impractical in a busy radiology practice. The result is a paucity of annotated
data and considerable challenges when attempting to train an accurate algo-
rithm. While traditional data augmentation techniques (e.g., crops, translation,
rotation) can mitigate some of these issues, they fundamentally produce highly
correlated image training data.

In this paper we demonstrate one potential solution to this problem by
generating synthetic images using a generative adversarial network (GAN) [9],
which provides an additional form of data augmentation and also serves as a
effective method of data anonymization. Multi-parametric magnetic resonance
images (MRIs) of abnormal brains (with tumor) are generated from segmenta-
tion masks of brain anatomy and tumor. This offers an automatable, low-cost
source of diverse data that can be used to supplement the training set. For exam-
ple, we can alter the tumor’s size, change its location, or place a tumor in an
otherwise healthy brain, to systematically have the image and the corresponding
annotation. Furthermore, GAN trained on a hospital data to generate synthetic
images can be used to share the data outside of the institution, to be used as an
anonymization tool.

Medical image simulation and synthesis have been studied for a while and are
increasingly getting traction in medical imaging community [7]. It is partly due to
the exponential growth in data availability, and partly due to the availability of
better machine learning models and supporting systems. Twelve recent research
on medical image synthesis and simulation were presented in the special issue of
Simulation and Synthesis in Medical Imaging [7].

This work falls into the synthesis category, and most related works are those
of Chartsias et al. [3] and Costa et al. [4]. We use the publicly available data set
(ADNI and BRATS) to demonstrate multi-parametric MRI image synthesis and
Chartsias et al. [3] use BRATS and ISLES (Ischemic Stroke Lesion Segmentation
(ISLES) 2015 challenge) data set. Nonetheless, evaluation criteria for synthetic
images were demonstrated on MSE, SSIM, and PSNR, but not directly on diag-
nostic quality. Costa et al. [4] used GAN to generate synthetic retinal images
with labels, but the ability to represent more diverse pathological pattern was
limited compared to this work. Also, both previous works were demonstrated
on 2D images or slices/views of 3D images, whereas in this work we directly
process 3D input/output. The input/output dimension is 4D when it is multi-
parametric (T1/T2/T1c/Flair). We believe processing data as 3D /4D in nature
better reflects the reality of data and their associated problems.

Reflecting the general trend of the machine learning community, the use of
GANSs in medical imaging has increased dramatically in the last year. GANs
have been used to generate a motion model from a single preoperative MRI
[10], upsample a low-resolution fundus image [13], create a synthetic head CT
from a brain MRI [16], and synthesizing T2-weight MRI from T1-weighted ones
(and vice-versa) [5]. Segmentation using GANs was demonstrated in [21,22].
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Finally, Frid-Adar et al. leveraged a GAN for data augmentation, in the context
of liver lesion classification [8]. To the best of our knowledge, there is no existing
literature on the generation of synthetic medical images as form of anonymization
and data augmentation for tumor segmentation tasks.

2 Data

2.1 Dataset

We use two publicly available data set of brain MRI:

Alzheimer’s Disease Neuroimaging Initiative (ADNI) Data Set

The ADNI was launched in 2003 as a public-private partnership, led by princi-
pal investigator Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date informa-
tion on the ADNI study, see www.adni-info.org. We follow the approach of [17]
that is shown to be effective for segmenting the brain atlas of ADNI data. The
atlas of white matter, gray matter, and cerebrospinal fluid (CSF) in the ADNI
T1-weighted images are generated using the SPM12 [1] segmentation and the
ANTSs SyN [19] non-linear registration algorithms. In total, there are 3,416 pairs
of T1-weighted MRI and their corresponding segmented tissue class images.

Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
Data Set

BRATS utilizes multi-institutional pre-operative MRIs and focuses on the seg-
mentation of intrinsically heterogeneous (in appearance, shape, and histology)
brain tumors, namely gliomas [14]. Each patient’s MRI image set includes a
variety of series including T1-weighted, T2-weighted, contrast-enhanced T1, and
FLAIR, along with a ground-truth voxel-wise annotation of edema, enhancing
tumor, and non-enhancing tumor. For more details about the BRATS data set,
see braintumorsegmentation.org. While the BRATS challenge is held annually,
we used the BRATS 2015 training data set which is publicly available.

2.2 Dataset Split and Pre-processing

As a pre-processing step, we perform skull-stripping [11] on the ADNI data set
as skulls are not present in the BRATS data set. The BRATS 2015 training
set provides 264 studies, of which we used the first 80% as a training set, and
the remaining 20% as a test set to assess final algorithm performance. Hyper-
parameter optimization was performed within the training set and the test set
was evaluated only once for each algorithm and settings assessed. Our GAN
operates in 3D, and due to memory and compute constraints, training images
were cropped axially to include the central 108 slices, discarding those above and
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below this central region, then resampled to 128 x 128 x 54 for model training and
inference. For a fair evaluation of the segmentation performance to the BRATS
challenge we used the original images with a resolution of 256 x 256 x 108 for
evaluation and comparison. However, it is possible that very small tumor may
get lost by the downsampling, thus affecting the final segmentation performance.

3 Methods

The image-to-image translation conditional GAN (pix2pix) model introduced
in [12] is adopted to translate label-to-MRI (synthetic image generation) and
MRI-to-label (image segmentation). For brain segmentation, the generator G is
given a T1-weighted image of ADNI as input and is trained to produce a brain
mask with white matter, grey matter and CSF. The discriminator D on the other
hand, is trained to distinguish “real” labels versus synthetically generated “fake”
labels. During the procedure (depicted in Fig.1(a)) the generator G learns to
segment brain labels from a T1-weighted MRI input. Since we did not have an
appropriate off-the-shelf segmentation method available for brain anatomy in the
BRATS data set, and the ADNI data set does not contain tumor information,
we first train the pix2pix model to segment normal brain anatomy from the
T1-weighted images of the ADNI data set. We then use this model to perform
inference on the T1 series of the BRATS data set. The segmentation of neural
anatomy, in combination with tumor segmentations provided by the BRATS
data set, provide a complete segmentation of the brain with tumor. The syn-
thetic image generation is trained by reversing the inputs to the generator and
training the discriminator to perform the inverse task (i.e., “is this imaging data

GAN training for image-to-brain GAN training for label-to-image GAN training for image-to-tumor
segmentation on ADN/ data synthesis on BRATS data segmentation on BRATS data
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Fig. 1. Illustration of training GAN for (a) MRI-to-brain segmentation; (b) label-to-
MRI synthesis; (¢) MRI-to-tumor segmentation.
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Fig. 2. Workflow of getting synthetic images with variation. On BRATS data set, MRI-
to-label image translation GAN is applied to T1-weighted images to get brain atlas.
It is then merged with the tumor label given in the BRATS data set, possibly with
alterations (shift tumor location; enlarge; shrink). The merged labels (with possibly
alterations) are then used as an input to label-to-MRI GAN, to generate synthetic
multi-parametric MRI with brain tumor.

acquired from a scanner or synthetically generated?” as opposed to “is this seg-
mentation the ground-truth annotation or synthetically generated?” — Fig. 1(b)).
We generate synthetic abnormal brain MRI from the labels and introduce vari-
ability by adjusting those labels (e.g., changing tumor size, moving the tumor’s
location, or placing tumor on a otherwise tumor-free brain label). Then GAN
segmentation module is used once again, to segment tumor from the BRATS
data set (input: multi-parametric MRI; output: tumor label). We compare the
segmentation performance (1) with and without additional synthetic data, (2)
using only the synthetic data and fine-tuning the model on 10% of the real data;
and compare their performance of GAN to a top-performing algorithm! [20] from
the BRATS 2017 challenge.

3.1 Data Augmentation with Synthetic Images

The GAN trained to generate synthetic images from labels allows for the gen-
eration of arbitrary multi-series abnormal brain MRIs. Since we have the brain

! https://github.com /taigw/brats17.
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anatomy label and tumor label separately, we can alter either the tumor label
or the brain label to get synthetic images with the characteristics we desire. For
instance, we can alter the tumor characteristics such as size, location of the exist-
ing brain and tumor label set, or place tumor label on an otherwise tumor-free
brain label. Examples of this are shown in Fig. 3.

The effect of the brain segmentation algorithm’s performance has not been
evaluated in this study.

Since the GAN was first trained on 3,416 pairs of T1-weighted (T1) images
from the ADNI data set, generated T1 images are of the high quality, and,
qualitatively difficult to distinguish from their original counterparts. BRATS
data was used to train the generation of non-T1-weighted image series. Contrast-
enhanced T1-weighted images use the same image acquisition scheme as T1-
weighted images. Consequently, the synthesized contrast-enhanced T1 images
appear reasonably realistic, although higher contrast along the tumor boundary
is observed in some of the generated images. T2-weighted (T2) and FLAIR image
acquisitions are fundamentally different from the T1-weighted images, resulting
in synthetic images that are less challenging to distinguish from scanner-acquired
images. However, given a sufficiently large training set on all these modalities,
this early evidence suggests that the generation of realistic synthetic images on
all the modalities may be possible.

Other than increasing the image resolution and getting more data especially
for the sequences other than T1-weighted images, there are still a few important
avenues to explore to improve the overall image quality. For instance, more
attention likely needs to be paid for the tumor boundaries so it does not look
superimposed and discrete when synthetic tumor is placed. Also, performance of
brain segmentation algorithm and its ability to generalize across different data
sets needs to be examined to obtain higher quality synthetic images combining
data sets from different patient population.

The augmentation using synthetic images can be used in addition to the
usual data augmentation methods such as random cropping, rotation, trans-
lation, or elastic deformation [15]. Moreover, we have more control over the
augmented images using the GAN-based synthetic image generation approach,
that we have more input-option (i.e., label) to perturb the given image than
the usual data augmentation techniques. The usual data augmentation methods
rely mostly on random processes and operates on the whole image level than
specific to a location, such as tumor. Additionally, since we generate image from
the corresponding label, we get more images for training without needing to
go through the labor-intensive manual annotation process. Figure4 shows the
process of training GAN with real and synthetic image and label pairs.

3.2 Generating Anonymized Synthetic Images with Variation

Protection of personal health information (PHI) is a critical aspect of work-
ing with patient data. Often times concern over dissemination of patient data
restricts the data availability to the research community, hindering develop-
ment of the field. While removing all DICOM metadata and skull-stripping will
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Fig. 3. Examples of generated images. The first row depicts the original (“real”) images
on which the synthetic tumors were based. Generated images without adjustment of the
segmentation label are shown in the second row. Examples of generated images with
various adjustments to the tumor segmentation label are shown in the third through
fifth rows. The last row depicts examples of synthetic images where a tumor label is
placed on a tumor-free brain label from the ADNI data set.

often eliminate nearly all identifiable information, demonstrably proving this to
a hospital’s data sharing committee is near impossible. Simply de-identifying the
data is insufficient. Furthermore, models themselves are subject to caution when
derived from sensitive patient data. It has been shown [2] that private data can
be extracted from a trained model.

Development of a GAN that generates synthetic, but realistic, data may
address these challenges. The first two rows of Fig. 3 illustrate how, even with
the same segmentation mask, notable variations can be observed between the
generated and original studies. This indicates that the GAN produces images
that do not reflect the underlying patients as individuals, but rather draws indi-
viduals from the population in aggregate. It generates new data that cannot be
attributed to a single patient but rather an instantiation of the training popu-
lation conditioned upon the provided segmentation.

4 Experiments and Results

4.1 Data Augmentation Using Synthetic Data

Dice score evaluation of the whole tumor segmentation produced by the GAN-
based model and the model of Wang et al. [20] (trained on real and synthetic
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Fig. 4. Training GAN for tumor segmentation with (a) real; and (b) synthetic image-
label pairs. Synthetic data generation can increase the training data set with desired
characteristics (e.g., tumor size, location, etc.) without the need of labor-intensive
manual annotation.

data) are shown in Table 1. The segmentation models are trained on 80% of the
BRATS’15 training data only, and the training data supplemented with synthetic
data. Dice scores are evaluated on the 20% held-out set from the BRATS’15
training data. All models are trained for 200 epochs on NVIDIA DGX systems.

A much improved performance with the addition of synthetic data is observed
without usual data augmentation (crop, rotation, elastic deformation; GAN-
based (no-aug)). However, a small increase in performance is observed when
added with usual data augmentation (GAN-based (no-aug)), and it applies also
to the model of Wang et al. [20] that incorporates usual data augmentation
techniques.

Wang et al. model operates in full resolution (256 x 256) combining three 2D
models for each axial/coronal/sagittal view, whereas our model and generator
operates in half the resolution (128 x 128 x 54) due to GPU memory limit.
We up-sampled the GAN-generated images twice the generated resolution for a
fair comparison with BRATS challenge, however it is possible that very small
tumor may get lost during the down-/up- sampling. A better performance may
be observed using the GAN-based model with an availability of GPU with more
memory. Also, we believe that the generated synthetic images having half the
resolution, coupled with the lack of the image sequences for training other than
T1-weighted ones possibly led to the relatively small increase in segmentation
performance compared to using the usual data augmentation techniques. We
carefully hypothesize that with more T2/Flair images being available, better
image quality will be observed for these sequences and so better performance for
more models and tumor types.
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4.2 Training on Anonymized Synthetic Data

We also evaluated the performance of the GAN-based segmentation on synthetic
data only, in amounts greater than or equal to the amount of real data but
without including any of the original data. The dice score evaluations are shown
in Table 1. Sub-optimal performance is achieved for both our GAN-based and
the model of Wang et al. [20] when training on an amount of synthetic data equal
to the original 80% training set. However, higher performance, comparable to
training on real data, is achieved when training the two models using more than
five times as much synthetic data (only), and fine-tuning using a 10% random
selection of the “real” training data. In this case, the synthetic data provides a
form of pre-training, allowing for much less “real” data to be used to achieve a
comparable level of performance.

Table 1. Dice score evaluation (mean/standard deviation) of GAN-based segmentation
algorithm and BRATS’17 top-performing algorithm [20], trained on “real” data only;
real 4+ synthetic data; and training on synthetic data only and fine-tuning the model
on 10% of the real data. GAN-based models were trained both with (with aug) and
without (no aug) including the usual data augmentation techniques (crop, rotation,
translation, and elastic deformation) during training. All models were trained for 200
epochs to convergence.

Method Real Real 4+ Synthetic | Synthetic | Synthetic only,
only fine-tune on 10% real
GAN-based | 0.64/0.14 | 0.80/0.07 0.25/0.14 | 0.80/0.18
(no aug)
GAN-based | 0.81/0.13 | 0.82/0.08 0.44/0.16 | 0.81/0.09
(with aug)
Wang et al. | 0.85/0.15 | 0.86,/0.09 0.66/0.13 | 0.84/0.15
[20]

5 Conclusion

In this paper, we propose a generative algorithm to produce synthetic abnormal
brain tumor multi-parametric MRI images from their corresponding segmenta-
tion masks using an image-to-image translation GAN. High levels of variation can
be introduced when generating such synthetic images by altering the input label
map. This results in improvements in segmentation performance across multiple
algorithms. Furthermore, these same algorithms can be trained on completely
anonymized data sets allowing for sharing of training data. When combined with
smaller, institution-specific data sets, modestly sized organizations are provided
the opportunity to train successful deep learning models.
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