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Abstract. Combinatorial games are widely used in finite model theory,
constraint satisfaction, modal logic and concurrency theory to character-
ize logical equivalences between structures. In particular, Ehrenfeucht-
Fräıssé games, pebble games, and bisimulation games play a central role.
We show how each of these types of games can be described in terms of
an indexed family of comonads on the category of relational structures
and homomorphisms. The index k is a resource parameter which bounds
the degree of access to the underlying structure. The coKleisli categories
for these comonads can be used to give syntax-free characterizations of
a wide range of important logical equivalences. Moreover, the coalge-
bras for these indexed comonads can be used to characterize key com-
binatorial parameters: tree-depth for the Ehrenfeucht-Fräıssé comonad,
tree-width for the pebbling comonad, and synchronization-tree depth for
the modal unfolding comonad. These results pave the way for systematic
connections between two major branches of the field of logic in computer
science which hitherto have been almost disjoint: categorical semantics,
and finite and algorithmic model theory.

1 Introduction

There is a remarkable divide in the field of logic in Computer Science, between
two distinct strands: one focussing on semantics and compositionality (“Struc-
ture”), the other on expressiveness and efficiency (“Power”). It is remarkable
because these two fundamental aspects of our field are studied using almost dis-
joint technical languages and methods, by almost disjoint research communiities.
We believe that bridging this divide is a major issue in Computer Science, and
may hold the key to fundamental advances in the field.

In this paper, we develop a novel approach to relating categorical semantics,
which exemplifies the first strand, to finite model theory, which exemplifies the
second. It builds on the ideas introduced in [1], but goes much further, showing
clearly that there is a strong and robust connection, which can serve as a basis
for many further developments.
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1.1 The Setting

Relational structures and the homomorphisms between them play a fundamen-
tal rôle in finite model theory, constraint satisfaction and database theory. The
existence of a homomorphism A → B is an equivalent formulation of constraint
satisfaction, and also equivalent to the preservation of existential positive sen-
tences [4]. This setting also generalizes what has become a central perspective
in graph theory [5].

1.2 Model Theory and Deception

In a sense, the purpose of model theory is “deception”. It allows us to see struc-
tures not “as they really are”, i.e. up to isomorphism, but only up to definable
properties, where definability is relative to a logical language L. The key notion
is logical equivalence ≡L. Given structures A, B over the same vocabulary:

A ≡L B Δ⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

If a class of structures K is definable in L, then it must be saturated under ≡L.
Moreover, for a wide class of cases of interest in finite model theory, the converse
holds [6].

The idea of syntax-independent characterizations of logical equivalence is
quite a classical one in model theory, exemplified by the Keisler-Shelah theo-
rem [10]. It acquires additional significance in finite model theory, where model
comparison games such as Ehrenfeucht-Fraissé games, pebble games and bisim-
ulation games play a central role [7].

We offer a new perspective on these ideas. We shall study these games, not as
external artefacts, but as semantic constructions in their own right. Each model-
theoretic comparison game encodes “deception” in terms of limited access to the
structure. These limitations are indexed by a parameter which quantifies the
resources which control this access. For Ehrenfeucht-Fraissé games, this is the
number of rounds; for pebble games, the number of pebbles; and for bisimulation
games, the modal depth.

2 Main Results

We now give a conceptual overview of our main results. Technical details are
provided in [2].

We shall consider three forms of model comparison game: Ehrenfeucht-Fraissé
games, pebble games and bisimulation games [7]. For each of these notions of
game G, and value of the resource parameter k, we shall define a corresponding
comonad Ck on the category of relational structures and homomorphisms over
some relational vocabulary. For each structure A, CkA is another structure over
the same vocabulary, which encodes the limited access to A afforded by playing
the game on A with k resources. There is always an associated homomorphism
εA : CkA → A (the counit of the comonad), so that CkA “covers” A. Moreover,
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given a homomorphism h : CkA → B, there is a Kleisli coextension homomor-
phism h∗ : CkA → CkB. This allows us to form the coKleisli category Kl(Ck)
for the comonad. The objects are relational structures, while the morphisms
from A to B in Kl(Ck) are exactly the homomorphisms of the form CkA → B.
Composition of these morphisms uses the Kleisli coextension. The connection
between this construction and the corresponding form of game G is expressed by
the following result:

Theorem 1. The following are equivalent:

1. There is a coKleisli morphism CkA → B
2. Duplicator has a winning strategy for the existential G-game with k resources,

played from A to B.
The existential form of the game has only a “forth” aspect, without the “back”.
This means that Spoiler can only play in A, while Duplicator only plays in B.
This corresponds to the asymmetric form of the coKleisli morphisms CkA → B.
Intuitively, Spoiler plays in CkA, which gives them limited access to A, while
Duplicator plays in B. The Kleisli coextension guarantees that Duplicator’s
strategies can always be lifted to CkB; while we can always compose a strat-
egy CkA → CkB with the counit on B to obtain a coKleisli morphism.

This asymmetric form may seem to limit the scope of this approach, but in
fact this is not the case. For each of these comonads Ck, we have the following
three equivalences:

– A �k B iff there are coKleisli morphisms CkA → B and CkB → A. Note
that there need be no relationship between these morphisms.

– A ∼=Kl(Ck) B iff A and B are isomorphic in the coKleisli category Kl(Ck). This
means that there are morphisms CkA → B and CkB → A which are inverses
of each other in Kl(Ck).

Clearly, ∼=Kl(Ck) strictly implies �k. We can also define an intermediate “back-
and-forth” equivalence ↔k, parameterized by a winning condition WA,B ⊆
CkA × CkB.

For each of our three types of game, there are corresponding fragments Lk

of first-order logic:

– For Ehrenfeucht-Fraissé games, Lk is the fragment of quantifier-rank ≤ k.
– For pebble games, Lk is the k-variable fragment.
– For bismulation games over relational vocabularies with symbols of arity at

most 2, Lk is the modal fragment [3] with modal depth ≤ k.

In each case, we write ∃Lk for the existential positive fragment of Lk, and L#
k

for the extension of Lk with counting quantifiers [7].
We can now state our first main result, in a suitably generic form.
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Theorem 2. For finite structures A and B:

(1) A ≡∃Lk B ⇐⇒ A �k B.

(2) A ≡Lk B ⇐⇒ A ↔k B.

(3) A ≡L#
k B ⇐⇒ A ∼=Kl(Ck) B.

Note that this is really a family of three theorems. Thus in each case, we capture
the salient logical equivalences in syntax-free, categorical form.

We now turn to the significance of indexing by the resource parameter k.
When k ≤ l, we have a natural inclusion morphism CkA → ClA, since playing
with k resources is a special case of playing with l ≥ k resources. This tells us
that the smaller k is, the easier it is to find a morphism CkA → B. Intuitively,
the more we restrict Spoiler’s abilities to access the structure of A, the easier it
is for Duplicator to win the game.

The contrary analysis applies to morphisms A → CkB. The smaller k is, the
harder it is find such a morphism. Note, however, that if A is a finite structure
of cardinality k, then A �k CkA. In this case, with k resources we can access
the whole of A. What can we say when k is strictly smaller than the cardinality
of A?

It turns out that there is a beautiful connection between these indexed
comonads and combinatorial invariants of structures. This is mediated by the
notion of coalgebra, another fundamental (and completely general) aspect of
comonads. A coalgebra for a comonad Ck on a structure A is a morphism
A → CkA satisfying certain properties. We define the coalgebra number of a
structure A, with respect to the indexed family of comonads Ck, to be the least
k such that there is a Ck-coalgebra on A.

We now come to our second main result.

Theorem 3.

– For the pebbling comonad, the coalgebra number of A corresponds precisely to
the treewidth of A.

– For the Ehrenfeucht-Fraissé comonad, the coalgebra number of A corresponds
precisely to the tree-depth of A [8].

– For the modal comonad, the coalgebra number of A corresponds precisely to
the forest depth of A.

The main idea behind these results is that coalgebras on A are in bijective cor-
respondence with decompositions of A of the appropriate form. We thus obtain
categorical characterizations of these key combinatorial invariants.
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