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Abstract. New positron emission tomography (PET) tracers could have a
substantial impact on early diagnosis of Alzheimer’s disease (AD) and mild
cognitive impairment (MCI) progression, particularly if they are accompanied
by optimised deep learning methods. To realize the full potential of deep
learning for PET imaging, large datasets are required for training. However,
dataset sizes are restricted due to limited availability. Meanwhile, most of the
AD classification studies have been based on structural MRI rather than PET. In
this paper, we propose a novel application of conditional Generative Adversarial
Networks (cGANs) to the generation of 18F-florbetapir PET images from cor-
responding MRI images. Furthermore, we show that generated PET images can
be used for synthetic data augmentation, and improve the performance of 3D
Convolutional Neural Networks (CNN) for predicting progression to AD. Our
method is applied to a dataset of 79 PET images, obtained from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. We generate high quality
PET images from corresponding MRIs using cGANs, and we evaluate the
quality of generated PET images by comparison to real images. We then use the
trained cGANs to generate synthetic PET images from additional MRI dataset.
Finally we build a 152-layer ResNet to compare the MCI classification per-
formance using both traditional data augmentation method and our proposed
synthetic data augmentation method. Mean Structural Similarity (SSIM) index
was 0.95 ± 0.05 for generated PET and real PET. For MCI progression clas-
sification, the traditional data augmentation method showed 75% accuracy while
the synthetic data augmentation improved this to 82%.
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1 Introduction

In recent years, amyloid positron emission tomography (PET) imaging has been
applied in some medical imaging problems such as Alzheimer’s disease classification
and detection of amyloid plaques [1, 2]. The first PET tracer used to image b-amyloid
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plaques was 11C-Pittsburgh-Compound-B (PiB) [3]. Due to the limited availability of
11C-PiB with its short half-life, 18F-labelled alternatives have been developed, which
allow off-site production and regional distribution. 18F-flutemetamol, 18F-florbetapir
and 18F-florbetaben have recently been approved by the US Food and Drug Admin-
istration (FDA) for clinical use. Abnormal uptake in grey matter causes a disruption of
the characteristic white matter pattern caused by non-specific white matter binding [4].
These scans are generally interpreted visually.

A separate group from healthy volunteers (HV) and patients with probable Alz-
heimer’s disease (pAD), mild cognitive impairment (MCI) is an intermediate cognitive
state between normal aging and dementia. Subjects with MCI, especially MCI
involving memory problems, are more likely to develop AD and other dementias [5].
According to this progression, MCI subjects can subsequently be classified as pro-
gressive MCI (pMCI) or stable MCI (sMCI) [6].

Many deep learning methods have been proposed to classify different AD stages
based on high dimensional features extracted from various neuroimaging biomarkers.
Meanwhile, the focus for AD classification has gradually evolved from classification
between healthy control and disease patients to classification between pMCI and sMCI.
In a recent paper on MCI classification, Kim et al. developed a deep learning-based
method for classifying tau-pet imaging patterns. MCI subjects were split into three
subgroups with the Louvain method. This method discriminated subgroups 1 and 2
with accuracy 90.91%, and 80.49% for subgroups 2 and 3 [7].

A big challenge in the medical imaging field is how to cope with small datasets and
limited amount of annotated samples [8]. One promising solution inspired by game
theory for image synthesis is known as Generative Adversarial Networks (GANs) [9].
The method is based on the idea of training two networks, a generator and a dis-
criminator simultaneously with competing losses. In the past few years, different
variations of GANs have been applied to generate realistic natural images, and recently,
the popularity of using GANs to generate medical images have also increased [10]. For
example, Frid et al. [11] proposed a CNN based classification framework to classify
different CT images, where GANs was used to generate high quality 2D liver lesion
ROIs from a vector of 100 random numbers. The classification performance using only
traditional data augmentation yielded 78.6% sensitivity and 88.4% specificity. By
adding the synthetic data augmentation the results increased to 85.7% sensitivity and
92.4% specificity. Recently, Madani et al. [12] used a GAN to generate the 2D chest
X-ray images from random noise, and the generated data were subsequently used to
train a CNN to classify images for cardiovascular abnormalities.

In general, the availability of MRI is much higher than PET for a number of
reasons. PET scanners are expensive to buy and operate, and thus less common. PET
scans require subjects are exposed to ionising radiation during the test. More impor-
tantly, the number of test datasets is very limited when newly developed PET tracers
are being tested. In this case, we aim at compensating this imbalance between available
MRI and PET images by using a limited dataset.

To the best of our knowledge, direct generation of 3D amyloid PET imaging from
structural MR has not yet been attempted. In this study, we focus on the application of
conditional GANs to generate high quality volumetric florbetapir PET images from
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corresponding MRI images. In this way, we expect the natural variability in MRI scans
and the image characteristics in PET to be combined. We also build a 152-layer ResNet
classification model to distinguish pMCI and sMCI subjects, and quantify the differ-
ence in performance caused by the addition of this synthetic datasets in training. The
summary of data generation model in this work is shown in Fig. 1.

2 Materials and Methods

2.1 Data and Pre-processing

All image data were acquired from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). ADNI aims to improve clinical trials for the
prevention and treatment of Alzheimer’s disease. To date, over 1000 scientific publi-
cations have used ADNI data. ADNI has been running since 2004 and is currently
funded until 2021.

In this study, 50 sMCI and 29 pMCI florbetapir images with corresponding T1 MRI
were obtained from the ADNI database (set A). A second group of 29 T1 MRI images
(21 of them with corresponding PET) from a different pMCI group were also down-
loaded (set B) and used independently. More details about the use of these datasets in
training/validating/testing the cGANs and ResNet are provided in the relevant sections
below. All the florbetapir images were pre-processed: MRI and PET scans from each
subject were co-registered, and the PET scan was then reoriented into a standard
160 � 160 � 96 voxel image grid, comprising 1.5 mm cubic voxels. This image grid
was oriented such that the anterior-posterior axis of the subject is parallel to the AC-PC
line. The MRI images have dimensions 256 � 256 � 196 with a voxel size of
1 mm � 1 mm � 1.2 mm.

Fig. 1. Summary of data generation procedure using a conditional GANs
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2.2 Amyloid PET Generation with Conditional Adversarial Training

GANs are generative networks that learn a mapping from random noise to output
image. They are composed of two networks, a generator and a discriminator, trained in
an adversarial way. The goal of the generator is to generate synthetic images, while the
discriminator, evaluates them for authenticity. In conditional GANs, the generator
learns a mapping between an input and an output image [13]. In this study, the gen-
erator is a U-Net based convolutional neural network with skip connections [14]. The
discriminator is a convolutional Markovian discriminator (PatchGAN), which only
penalizes structure at the scale of image patches. During the GANs training process, the
generated PET was paired with the corresponding MRI and entered into the discrim-
inator. The loss function of the conditional GANs is:

LcGAN G;Dð Þ ¼ Ex;y logD x; yð Þ½ � þEx logð1� D x;G xð Þð ÞÞ½ � ð1Þ

where x are MRI images and y are PET images. The first term is maximized when
D x; yð Þ ¼ 1, and the second is maximized when the D x; G xð Þð Þ ¼ 0, while it is
minimised when D x; G xð Þð Þ ¼ 1, i.e. discriminator is not able to distinguish the
generated images and real images. The generator G tries to minimize this objective
against an adversarial discriminator D that tries to maximize it. In addition, conditional
GANs also add an L1 loss term:

LL1 Gð Þ ¼ Ex;y y� G xð Þk kð Þ ð2Þ

Therefore the complete form of loss function is:

Ltotal G;Dð Þ ¼ LcGAN G;Dð Þþ eLL1 Gð Þ ð3Þ

where e is used to adjust the contribution of L1 loss, and it is set to 100 in the
experiments reported here.

In order to measure the similarity between generated PET and real PET, We used
SSIM due to its combination of errors in image contrast and overall structure [15, 16].
The structural similarity index (SSIM) was calculated as:

SSIM x; yð Þ ¼ 2lxly þC1
� �

2rxy þC2
� �

l2x þ l2y þC1

� �
r2x þ r2y þC2

� � ð4Þ

where lx, ly, rx, ry, rxy are the local means, standard deviations, and cross-covariance
for images x, y. C1 and C2 are regularization constants determined by pixel value
range. The SSIM = 1 meaning that the two images are identical.

In this work, we used the 29 paired PET and MRI images from the pMCI group in
set A to train the conditional GANs, and subsequently apply the mapping to the unseen
29 MRI images in set B to generate 29 synthetic PET images, thus doubling the size of
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the pMCI dataset. In set B, 21 subjects had available PET scans, which we used to test
the cGANs by calculating SSIM values. For the implementation of the cGANs
architecture we used the Keras framework. The experiment was conducted on computer
cluster equipped with NVIDIA GeForce GTX 1080 Ti GPU.

2.3 MCI Progression Classification Architecture Using 3D ResNet

Deep Residual Network (ResNet) [17] is arguably one of the most important devel-
opments in the deep learning area in the last few years. ResNet makes it possible to
train up to thousands of layers and still achieves competitive performance with fast
convergence. The core concept of ResNet is introducing an identity shortcut connection
that skips one or more layers.

ResNet have been used successfully for 3D image segmentation as in VoxResNet,
where the authors use identity mappings as skip connections [18]. In our work, the
ResNet architecture was modified based on the identity mappings version [19] that
refines the residual block with a pre-activation variant.

The main difference between our network and the identity mappings version is the
number of dimensions of convolutional kernels and pooling. Our ResNet architecture
has 152 layers containing 50 3-layer blocks. The three layers are 1�1�1, 3�3�3,
1�1�1 convolutions, where the 1�1�1 layers are responsible for reducing and then
increasing dimensions, leaving the 3�3�3 layer a bottleneck with smaller input and
output dimensions, as detailed in Table 1. Down-sampling is performed by conv3_1,
conv4_1, conv5_1 with a stride of 2.

We trained our classification model using 50 sMCI and 29 pMCI real florbetapir
images from set A. A 10-fold cross-validation was applied to the whole dataset. We
tested three scenarios. In the first one only real images were used with no

Table 1. 152-ResNet architecture for pMCI and sMCI classification

Layer name 152-layer

Conv1 7 � 7 � 7, 64, stride 2
Conv2_x 3 � 3 � 3 max pool, stride 2

1� 1� 1 64
3� 3� 3 64
1� 1� 1 256

2
4

3
5 � 3

Conv3_x 1� 1� 1 128
3� 3� 3 128
1� 1� 1 512

2
4

3
5 � 8

Conv4_x 1� 1� 1 256
3� 3� 3 256
1� 1� 1 1024

2
4

3
5 � 36

Conv5_x 1� 1� 1 512
3� 3� 3 512
1� 1� 1 2048

2
4

3
5 � 3

Average pool, 2-d fc, softmax
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augmentation. The second one included traditional augmentation, which was done at
each epoch. Specifically, the random rotation range is set to 20°, and images will be
randomly flipped horizontally and vertically. These two experiments used 65 samples
for training, 6 for validation, and 8 for testing. The third experiment used our cGANs
augmented dataset, including the additional 29 PET images generated from the MRI
scans in set B, resulting in 89 samples for training, 8 for validation, and 11 for testing.
For training we used a batch size of 1 with a learning rate of 0.0001 for 100 epochs. We
used Keras to implement our MCI classification framework. The experiment was
performed on computer cluster with NVIDIA GeForce GTX 1080 Ti GPU.

3 Results and Discussion

3.1 Data Generation

In this study, we used volumetric MRI images to generate 3D PET images to enlarge
pMCI group. Examples of real and generated PET images, with their corresponding
SSIM values, are shown in Fig. 2. As can be seen from Fig. 2, the generated PET and
real PET contain similar signal patterns. The mean SSIM obtained was 0.95 � 0.05.
Figure 3 shows generated PET images obtained from MRI scans for which the cor-
responding real PET was not available.

3.2 Classification Results

Classification results for pMCI against sMCI using 152-ResNet are shown in Table 2.
We computed both the area under the receiver operating characteristic curve
(AUC) and the accuracy (ACC). Three different cases are compared: classification with
a network trained using only the real images, with no augmentation (top row); with a
network trained using traditional augmentation (middle row) and using our synthetic
images based augmentation method (bottom row).

As can be seen from Table 2, the classification score for sMCI against pMCI using
real PET images achieved accuracy 0.63, and with the aid of traditional data aug-
mentation, the accuracy raised to 0.75. As we expected, the highest accuracy was
obtained by using our proposed synthetic augmentation method, achieving an
improvement of 7% over the traditional augmentation.

Table 2. Classification ROC AUC and accuracy (mean ± std) with 152-ResNet

AUC ACC

sMCI vs pMCI (real images) 0.71 � 0.08 0.63 � 0.11
sMCI vs pMCI (traditional augmentation) 0.77 � 0.11 0.75 � 0.09
sMCI vs pMCI (real + generated images) 0.81 � 0.07 0.82 � 0.12
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4 Conclusion

We developed a model for generating florbetapir PET from structural MR using deep
generative networks, with generated data showing a high similarity to real corre-
sponding PET. The generated data were then used for data augmentation for MCI
classification on a limited dataset. We compared the synthetic augmentation method
with a traditional augmentation method, and the synthetic augmentation outperformed
the traditional augmentation. Future work will focus on using multi-modality imaging
biomarkers for CNN classification.

Fig. 2. Examples of real PET and generated PET images presented in different axial slices with
SSIM score

Fig. 3. Examples of unseen MRI and corresponding generated PET, corresponding real PET is
not available
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