
Diffusion MRI Spatial Super-Resolution
Using Generative Adversarial Networks

Enes Albay(B), Ugur Demir, and Gozde Unal

Istanbul Technical University, Istanbul 34469, Turkey
{albay,ugurdemir,gozde.unal}@itu.edu.tr

Abstract. Spatial resolution is one of the main constraints in diffusion
Magnetic Resonance Imaging (dMRI). Increasing resolution leads to a
decrease in SNR of the diffusion images. Acquiring high resolution images
without reducing SNRs requires larger magnetic fields and long scan
times which are typically not applicable in the clinical settings. Currently
feasible voxel size is around 1 mm3 for a diffusion image. In this paper, we
present a deep neural network based post-processing method to increase
the spatial resolution in diffusion MRI. We utilize Generative Adversarial
Networks (GANs) to obtain a higher resolution diffusion MR image in the
spatial dimension from lower resolution diffusion images. The obtained
real data results demonstrate a first time proof of concept that GANs
can be useful in super-resolution problem of diffusion MRI for upscaling
in the spatial dimension.
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1 Introduction

Water molecules undergo random movement and diffuse in an environment due
to second law of thermodynamics. Diffusion phenomenon enables us to map
fibrous substances using principles of magnetic resonance imaging (MRI). Diffu-
sion magnetic resonance imaging (dMRI) takes advantage of signal attenuation
that takes place due to diffusion of water molecules in a tissue that is being
imaged. Although the signal attenuates isotropically in a free water environment,
the signal shows varying attenuations in a restricted environment. This gives an
opportunity of in vivo imaging of the internal structure of the human brain white
matter, which contains fibrous material that restricts water molecules movements
in some directions while water molecules move freely in other directions [10].

Even though dMRI allows microscopic imaging of the white matter at very
high magnetic fields, spatial resolution of dMRI is restricted clinically because
with the current technology, very high magnetic fields cannot be used ante-
mortem. Furthermore, long scan times are not clinically feasible for microscopic
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resolution. At lower magnetic fields, signal to noise ratio (SNR) becomes prob-
lematic for small voxel sizes. Currently, for diffusion image volumes, clinically
applicable voxel size is about 1 mm3 [11], which is relatively coarse with respect
to underlying microstructure of brain tissue. Diameter of neuronal axons in brain
white matter is at most 30 µm [7], therefore, a typical voxel contains thousands of
fiber populations, possibly lying along different directions with crossings, splay-
ing, or kissing architectures. Hence, increasing both spatial resolution and angu-
lar resolution of dMRI using post-processing techniques is desirable and would
aid in post-analysis of dMRI data.

In this paper, we present a post-processing method to generate higher spatial
resolution dMRI volumes based on an end-to-end generative adversarial network
(GAN) framework [5]. GANs learn a mapping from low resolution diffusion MRI
data to synthesize a high resolution counterpart. Its main difference from con-
ventional methods is that GANs learn a non-linear model from pairs of low
resolution-high resolution data rather than performing a blind interpolation.

2 Related Works

Only a few spatial super resolution methods for diffusion MRI were presented
in the literature. Conventional methods for super resolution are typically based
on up-sampling with interpolation of low resolution data. An early super reso-
lution approach to diffusion data is based on combination of two shifted images
to create an up-sampled image [14], which led to blurry results. Alternatively, a
track density approach was presented to obtain super resolution in white matter
fiber tracts based on tractography information, however, this method does not
up-sample the underlying spatial structure of the diffusion images [1]. A Markov
chain Monte Carlo method, the Metropolis-Hastings algorithm is utilized by [19]
to create a generative model of local information and sharpens images according
to local structure while increasing spatial resolution. This is different from our
approach as it does not actually directly learn the data distribution. A recently
suggested method proposes using RGB image enhancement method with diffu-
sion images, however, not leading to clear results [18]. It is observed that diffusion
weighted images are blurry and ODFs are corrupted with respect to the ground
truth data. Recent studies on texture synthesis have shown that convolutional
neural networks and adversarial training can be successfully applied to super-
resolve images at high upscale factors [3,12]. This was the motivation of our
method, which is presented next.

3 Method

We introduce a deep GAN based single slice super-resolution model that takes
a down-sampled low resolution dMRI axial slice ILR and synthesizes its high
resolution counterpart ÎHR. Each down-sampled axial slice from a brain volume
is upscaled to the desired resolution with a certain scale factor through bi-cubic
interpolation, which is called Ibc

LR. In this paper, we exemplify the spatial super
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resolution model with an up-sampling factor of two. The generative model takes
Ibc
LR, and tries to expose the high frequency details by exploring the context of

low-resolution image. The trained network resolves the blurriness and generates
sharp images filled with estimated missing details. Overall flow of our method is
depicted in Fig. 1.

Fig. 1. General structure of architecture. Input slices are x2 upscaled by bi-cubic
interpolation. Generator network takes input IbcLR images and synthesizes “fake” high-
resolution slices IHR. Discriminator network evaluates artificially generated slices and
produces an adversarial loss.

During training of the generative model, an adversarial training [5] approach
is used in order to produce more realistic looking outputs. Training procedure
intends to minimize the combination of an adversarial loss produced by the
discriminator network, and a pixel-wise reconstruction loss (an L2 Loss) to con-
ditionally generate samples from the high resolution image distribution. Details
of this procedure are described next.

3.1 Generative Adversarial Networks

GANs have been used to figure out distribution of the input data by learning a
mapping from a noise variable to the data space [5]. Recent studies show that
once the distribution is learned, the model can be used to generate realistic look-
ing samples [6,12]. Apart from sample generation, GANs are also used to learn
a mapping between contextually paired two images [6]. In our super-resolution
problem, low resolution image Ibc

LR is given as a condition to the generator and
it is expected that our model learns a mapping G that translates Ibc

LR to IHR.
There are two different neural networks in the adversarial training phase. The

generative network G corresponds to mapping function between the input and
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the output. The purpose of the discriminator network D is distinguishing the
real images from the artificially synthesized ones. While the network G aims to
fool D, at the same time, D is trained to improve its accuracy. This optimization
problem corresponds to a minimax game, which can be formulated as:

min
θG

max
θD

E[log D(IHR)] + E[log(1 − D(G(Ibc
LR)))]. (1)

As long as D successfully classifies its input, G benefits from the gradient pro-
vided by the D network via its adversarial loss.

Generator Network. The architecture of the generative network is ResNet,
which is composed by following the guidelines described in [8]. It consists of
down-sampling layers, residual blocks and up-sampling layers. There are two
down-sampling layers and each one consists of a convolution layer with stride
set to 2, batch normalization layer and Leaky ReLU (LReLU) activation. There
are six residual blocks in the architecture. The up-sampling blocks recover spatial
resolution of the activation maps in order to reach desired height and width for a
slice. An up-sampling layer contains resized convolution [13], batch normalization
and LReLU activation. Additionally, a 7 × 7 convolution layer with a Tanh
activation is added to end of the network.

Discriminator Network. We utilize a patch based discriminator network
PatchGAN [6] design which evaluates local patches of the generated image and
gives an average score as a measure instead of considering the whole input. This
gives more robust results than the vanilla GAN. Our patch based discriminator
has 6 convolution layers followed by batch normalization except the first and the
last layers. First 5 layers have LReLU activation and the last convolution layer
pass its outputs to Sigmoid activation.

3.2 Training Objective

The main objective function is formed by combining the reconstruction and
adversarial losses. The total loss function is optimized with back-propagation by
using Adam optimizer [9]. L2 pixel-wise distances between the synthesized image
and the ground truth are used as reconstruction loss. Even though it forces the
network to produce a blurry output, it guides the network to roughly predict
texture colors and low frequency details. Discriminator network computes a score
according to quality of the generator outputs and, and is used as an adversarial
loss as described in Eq. 1.

Total loss function defines the objective used in the training phase. Each
component of the total loss function is governed by a coefficient λ:

L = λ1Lrec + λ2Ladv. (2)

where Lrec is reconstruction loss and Ladv is adversarial loss.
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4 Experiments

4.1 Dataset

A diffusion dataset obtained from the Human Connectome Project (HCP) is
used [17], where 29 diffusion subjects are randomly selected, and 25 are used to
train the network and four of them are used in testing. HCP diffusion images
are multi-shell, from which a single shell is extracted for each subject, which
resulted in 108 diffusion volumes per subject. It was shown that the best b-value
with an SNR of 30 for a non-diffusion weighted volume is between 3000 and
4000 s/mm2 [16]. As the SNR of the HCP data is greater than 30 for the non-
diffusion weighted volume, a single shell that has b-value 2000 s/mm2 is selected.
DIPY [4] library is used in all the analysis. All 108 diffusion-weighted volumes
including non-diffusion weighted volumes are used in training the network, and
the super resolution model is applied for up-sampling of all diffusion volumes in
the test stage. In Fig. 2, sample visual results for diffusion-weighted images with
Ibc
LR, ÎHR and IHR from a selected subject are shown. It can be seen that Ibc

LR is
blurry and our network produces ÎHR image with a success.

Fig. 2. Diffusion-weighted images for IbcLR, ÎHR and IHR of selected one subject,
respectively.

4.2 SNR Comparison and FA (Fractional Anisotropy) Maps

SNR values of Ibc
LR, ÎHR and IHR are compared to measure how image generation

introduced noise to diffusion data. The same ROI is used to compare each of the
images. SNR values are computed according to most signal attenuation direction
approach [2].

Corpus Callosum (CC) is segmented automatically using fractional
anisotropy (FA) values. SNR values in the CC region in x, y ad z-directions
are compared for four different subjects in Table 1. It can be observed that ÎHR

shows closer SNR values to IHR than those of the Ibc
LR.

As a second quantitative evaluation, FA histograms are calculated for each
subject. Figure 3 depicts the histograms for two of the subjects. The histograms
show that IHR and ÎHR exhibit very similar distributions for FA values that are
greater than 0.4. Other two subjects displayed similar distributions.

The generated FA maps and color FA maps are shown in Fig. 4 for one of the
subjects. It can be observed that IHR and ÎHR have similar FA and color FA
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Table 1. SNR values comparison in the various directions. Generated output has
similar SNR values with the ground truth.

Subject 1 Subject 2 Subject 3 Subject 4

Direction IbcLR ÎHR IHR IbcLR ÎHR IHR IbcLR ÎHR IHR IbcLR ÎHR IHR

b0 76.05 62.64 50.19 72.52 63.04 51.02 40.8 37.26 29.1 113.47 92.87 83.51

x-dir 12.15 10.92 9.2 12.39 11.59 10.3 5.99 4.62 5.24 16.08 12.82 14.29

y-dir 39.27 32.14 27.44 36.05 34.21 28.7 18.91 16.35 15.25 52.0 43.43 45.52

z-dir 33.75 25.79 25.99 31.44 26.42 27.95 18.78 14.12 15.89 56.57 43.44 49.33

(a) Subject 1 (b) Subject 2

Fig. 3. FA distributions for two subjects. Green shows IHR distribution, blue shows
ÎHR and red shows IbcLR (Color figure online)

Fig. 4. Color FA maps are shown for IbcLR, ÎHR and IHR images respectively. Red
indicates right-left axis, green for anterior-posterior axis and blue for inferior-superior
axis diffusion. (Color figure online)

maps while the baseline bi-cubic interpolation introduces attenuation and blur
in the FA maps.

4.3 Tensor and ODF Analysis

For further evaluation of the quality of the reconstructed high resolution diffusion
volumes, the diffusion tensor models are constructed for ÎHR, Ibc

LR and IHR.
Figure 5 shows the results for one of the subjects. Similar tensor orientations
and strengths at the crossing points of CC and corticospinal tracts (CST) are
observed for the ÎHR and IHR of test subjects.

The orientation distribution functions (ODFs) are generated using con-
strained spherical deconvolution (CSD) [15] over the high resolution diffusion vol-
umes. In Fig. 6, reconstructed ODFs are shown for one subject. It was observed
that Ibc

LR has bigger artifactual side lobes.
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Fig. 5. Reconstructed tensors of diffusion image for one selected subject. Leftmost
image is a general coronal view. Other views show IbcLR, ÎHR and IHR images at the
area of crossing between CC and CST, respectively. Red indicates right-left axis, green
for anterior-posterior axis and blue for inferior-superior axis diffusion. (Color figure
online)

Fig. 6. Reconstructed ODFs over high resolution diffusion images. Leftmost image is a
general coronal view. Crossing between CC and CST is shown in the yellow rectangle.
Other views show ODFs of IbcLR, ÎHR and IHR images at the area of crossing between
CC and CST, respectively. (Color figure online)

5 Conclusions

In this paper, for the first time, an end-to-end super-resolution method based on
GANs is presented for dMRI data. This approach does not assume any model,
does not simply interpolate existing data but learns a data-driven generative
mapping. The experimental quantitative results such as distribution of FA values
and SNR as well as qualitative results such as FA maps, color FA maps, recon-
structed tensors and ODFs demonstrate that GANs produce promising results
to create higher resolution data using low resolution dMRI input. Although our
work shows a preliminary proof of concept with GANs to increase the spatial
resolution of dMRI twofold, our future work investigates further tuning of net-
works with larger training sets, increasing the resolution to triple, quadruple, or
higher scale factors, and extending our work to angular up-sampling.
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