®

Check for
updates

SRC: RoboCup 2017 Small Size League Champion

Ren Wei@), Wenhui Ma, Zongjie Yu, Wei Huang, and Shenghao Shan

Fubot Shanghai Robotics Technology Co. LTD, Shanghai, People’s Republic of China
ninjawei@fubot.cn

Abstract. In this paper, we present our robot’s hardware overview, software
framework and free-kick strategy. The free-kick tactic plays a key role during the
competition. This strategy is based on reinforcement learning and we design a
hierarchical structure with MAXQ decomposition, aiming to train the central
server to select a best strategy from the predefined routines. Moreover, we ad-just
the strategy intentionally before the final. Our team won the first place in the SSL
and we hope our effort can contribute to the RoboCup artificial intelligent
progress.

Keywords: RoboCup - SSL - MAXQ - Free-kick - Reinforcement learning

1 Introduction

As a famous international robot event, RoboCup appeals to numerous robot enthusiasts
and researchers around the world. The small size league (SSL) is one of the oldest
leagues in RoboCup and consists of 28 teams this year. A SSL game takes place between
two teams of six robots each. Each robot must conform to the specified dimensions: the
robot must fit within a 180 mm diameter circle and must be no higher than 15 cm. The
robots play soccer with an orange golf ball on a green carpeted field that is 9 m long by
6 m wide. All objects on the field are tracked by a standardized vision system that
processes the data provided by four cameras that are attached to a camera bar located
4 m above the playing surface. Off-field computers for each team are used for the
processing required for coordination and control of the robots. Communication is wire-
less and uses dedicated commercial radio transmitter/receiver.

We introduce the hardware overview and software framework in this paper. The
software framework has a plugin system which brings extensibility. For the high level
strategy, our energy is focused on the free-kick because we want to find a more intelligent
and controllable one. Controllable means that we hope our team can switch strategy in
case that the opponent change their strategy in next game. The intelligent and the
controllable are not contradictory. Many research also indicate the importance of free-
kick [1, 3].

In recent years, many applications about reinforcement learning have sprung up, for
instance, the Al used in the StarCraft and DotA. These applications require the cooper-
ation between agents and the RoboCup is a perfect testbed for the research of reinforce-
ment learning for its simplified multi-agents environment and explicit goal. In this

© Springer Nature Switzerland AG 2018
H. Akiyama et al. (Eds.): RoboCup 2017, LNAI 11175, pp. 413-422, 2018.
https://doi.org/10.1007/978-3-030-00308-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00308-1_34&domain=pdf

414

context comes our free-kick strategy and the empirical result in the RoboCup 2017

R. Wei et al.

indicates that our strategy has out-standing performances.

The remainder of this paper is organized as follows. Section 2 describes the overview
of the robot’s hardware. Section 3 presents the details of robotics framework we used.
Section 4 introduces the markov decision process (MDP) and the MAXQ method in the
Sect. 4.1, then illustrates the application in our free-kick strategy. The Sect. 5 shows the

result. Finally, Sect. 6 concludes the paper and points out some future work.

2 Hardware

In this part, we describe the overview of the robot mechanic design. The controller board

is shown in Fig. 1 and the mechanical structure is in Fig. 2.

Our CPU is STM32F407VET6. The main components are:

9
2
3)
“)
o)
(6)
W
®)

5
[y
oy
k_%'

@

L

()
(3)

@

©
©

Fig. 1. Controller board overview

Colored LED interface
Motor Controller interface
Encoder interface

Infrared interface

Motor interface

Speaker interface

LED screen interface
Mode setting switcher

1w

SRC: RoboCup 2017 Small Size League Champion 415

(9) Bluetooth indicator
(10) Debug interface
(11) Joystick indicator
(12) Booster switcher

®©
@

®@ 0 e

Fig. 2. Mechanical structure

(1) LED screen

(2) Charge status indicator
(3) Kicker mechanism

(4) Bluetooth Speaker

(5) Battery

(6) Universal wheel

(7) Power button

(8) Energy-storage capacitor

3 Software Framework

RoboKit is a robotics framework developed by us, as shown in Fig. 3. It contains
plugin system, communication mechanism, event system, service system, parameter
server, network protocol, logging system and Lua Script bindings etc. We develop
it with C++ and Lua, so it is a cross platform framework (working on windows,
Linux, MacOS etc.). For SSL, we developed some plugins based on this frame-
work, such as vision-plugin, skill-plugin, strategy-plugin etc. Vision-plugin contains
multi-camera fusion, speed filter and trajectory prediction. Skill-plugin contains all
of the basic action such as kick, intercept, chase, chip etc. And strategy-plugin
contains defense and attack system.

416 R. Wei et al.

Fire Event or
Call Delegate

RoboKit Core

Fig. 3. RoboKit structure

4 Reinforcement Learning

Reinforcement learning has become an important method in RoboCup. Stone, Veloso
[3, 4, 12], Bai [2], Riedmiller [13] et al. have done a lot of work on the online learning,
SMDP Sarsa (A) and MAXQ-OP for robots planning.

Free-kick plays a significant role in the offense, while the opponents’ formation of
defense are relatively not so changeable. Our free-kick strategy is inspired from that a
free-kick can also be treated as a MDP and the robot can learn to select the best free-
kick tactics from a certain number of pre-defined scripts. For the learning process, we
also implement the MAXQ method to handle the large state space.

In this chapter we will first briefly introduce the MDP and MAXQ, further details
can be found here [9]. Then, we will show how to implement this method in our free-
kick strategy, involving the MDP modeling and the sub-task structure construction.

4.1 MAXQ Decomposition

The MAXQ technique decomposes a markov decision process M into several sub-
processes hierarchically, denoted by {Mi, i=0,1,... ,n}. Each sub-process M, is also a
MDP and defined as (S;, T;,A;, R;), where S, and T, are the active state and termination

1’ 1°

SRC: RoboCup 2017 Small Size League Champion 417

set of M, respectively. When the active state transit to a state among T, the M, is solved.
A, is a set of actions which can be performed by M or the subtask M,. R,(s'|s, a) is the
pseudo-reward function for transitions from active states to termination sets, indicating
the upper sub-task’s preference for action a during the transition from the state s’ to the
state s. If the termination state is not the expected one, a negative reward would be given
to avoid M, generating this termination state [9]

Qi(s,a) = V*(a,s) + C(s,a) (1)

Where Q7 (s, a) is the expected value by firstly performing action M, at state s, and
then following policy x until the M, terminates. V”(a, s) is a projected value function of
hierarchical policy x for sub-task in state s, defined as the expected value after executing
policy = at state s, until M, terminates.

wr o _ | RGs,D if M, is primitive
Vit s) = { max,e, Qi (s, a) otherwise @

Ci(s,a) is the completion function for policy x that estimates the cumulative reward
after executing the action M, defined as:

Ci(s,a) = ZS,NyNP(s’,le,a)V* (i,s) 3)
The online planning solution is explained in [2], and here we list the main algorithms.

Algorithm 1. OnlinePlanning ()
Input: an MDP model with its MAXQ hierarchical structure
Output: the accumulated reward r after reaching a goal
re<20
s « GetInitState()
r « r + InitialAction(a,, s)
while s €& G
do
(v,a,) < EvaluateState(0,s,[0,0,:+-,0])
r < 1+ ExecuteAction(a,, s)
GetNextState()
return r

Here we set an initial action update before the system start updating. The initial action
enable us to modify the strategy according to the opponent’s defense formation.

418 R. Wei et al.

Algorithm 2. EvaluateState(i,s,d)
Input: subtask M;, state s and depth arrayd
Output: (V'(i,s),a,")
if M; is primitive then return (R(s,M;), M;)
else if s€S;ands & G; then return (—o°,nil)
else if s€G; then return (0,nil)
else if d[i] = D[i] then return (HeuristicValue(i,s),nil)
else
(v',a,") « (—oo,nil)
for M, € Subtasks(M;) do
if M, is primitive or s €& G, then
(v,a,) « EvaluateState(k,s,d)
v« v+ EvaluateCompletion(i,s,k,d)
if v>v*
(v',a,") < (v,a)
end
return (v',a,")

Algorithm 2 summarizes the major procedures of evaluating a subtask. The proce-
dure uses an AND-OR tree and a depth-first search method. The recursion will end when:

(1) the subtask is a primitive action;
(2) the state is a goal state or a state outside the scope of this subtask;
(3) acertain depth is reached.

Algorithm 3. EvaluateCompletion (i,s,a,d)
Input: subtask M;, state s, action M, and depth arrayd
Output: estimated C*(is,d)
G, « ImportanceSampling(G,,D,)
ve0
for s' € G, do
d «d;
d'[i] « d'[i] +1
v<—v+aial EvaluateState(is’,d")
end
return v

Algorithm 3 shows a recursive procedure to estimate the completion function, where
G, is a set of sampled states drawn from prior distribution D, using importance sampling
techniques.

SRC: RoboCup 2017 Small Size League Champion 419

4.2 Application in Free-Kick

Now we utilize the techniques we mentioned in our free-kick strategy. First we should
model the free-kick as a MDP, specifying the state, action, transition and reward
functions.

State. As usual, the teammates and opponents are treated as the observations of envi-
ronment. The state vector’s length is fixed, containing 5 teammates and 6 opponents.

Action. For the free-kick, the actions includes kick, turn and dash. They are in the
continuous action space.

Transition. We predefined 60 scripts which tell agent the behavior of team-mates.
These scripts are chosen randomly. For the opponents, we simply assume them moving
or kicking (if kickable) randomly. The basic atomic actions is modeled from the
dynamics.

Reward Function. The reward function considers not only the ball scored, which may
cause the forward search process terminates without rewards for a long period. Consid-
ering a free-kick, a satisfying serve should never be intercepted by the opponents, so if
the ball pass through the opponents, we give a positive reward. Similarly, we design
several rewards function for different sub-tasks.

Next, we implement MAXQ to decompose the state space. Our free-kick MAXQ
hierarchy is constructed as follows:

Primitive Actions. We define three low-level primitive actions for the free-kick
process: the kick, turn and dash. Each primitive action has a reward of —1 so that the
policy reach the goal fast.

Subtasks. The kickTo aims to kick the ball to a direction with a proper velocity, while
the moveTo is designed to move the robot to some locations. To a higher level, there
are Lob, Pass, Dribble, Shoot, Position and Formation behaviors where:

(1) Lob is to kick the ball in the air to lands behind the opponents;
(2) Pass is to give the ball to a teammate.

(3) Dribble is to carry the ball for some distance.

(4) Shoot is to kick the ball to score.

(5) Position is to maintain the formation in the free-kick.

Free-Kick. The root of the process will evaluate which sub-task should the place kicker
should take.

Our hierarchy structure is shown in Fig. 4. Note that some sub-tasks need parameters
and they are represented by a parenthesis.

420 R. Wei et al.

IR >

Fig. 4. Hierarchical structure of free-kick

5 Performance Evaluation

To evaluate the strategy’s performance, we filter out the defense frames from the log
files of teams in RoboCup 2016. Then we summarize each team’s defense strategy and

write a simulator to defend against our team.

For each team, we run 200 free-kick attacks. Tables 1 and 2 shows the test results.
Compare to the primitive free-kick strategy, our new strategy has a higher rate to score

from a free-kick and that’s what we expected.

Table 1. Training result against log files of RoboCup 2016 above: Free-kick with primitive

routine below: Free-kick using RL

Opponent | Free-kicks Goals | Score rate
KIKS 200 14 7.0%
RoboFEI | 200 0 0.0%
STOx’s 200 25 12.5%
Parsian 200 7 3.5%
ER-force |200 18 9.0%
Opponent | Free-kicks Goals | Score rate
KIKS 200 35 17.5%
RoboFEI | 200 52 26.0%
STOx’s | 200 48 24.0%
Parsian 200 22 11.0%
ER-force |200 69 34.5%

In the RoboCup 2017, the strategy is tested. Note that the mechanism is not idealize,
some teamwork fails frequently. Still, it can be seen from the Tables 2 and 3 that our

team outperforms other teams.

SRC: RoboCup 2017 Small Size League Champion 421

Table 2. RoboCup 2017 round robin result

Opponent (round robin) Score
KIKS 1:0
RoboFEI 9:0
ER-force 1:0

Table 3. RoboCup 2017 result of Elimination

Opponent (elimination) Score
STOX’s 1:0

Before the Final, we got the log file of other teams and modified the strategy by
specifying the initial action of place kicker (i.e. the kicker would directly pass the ball
to teammates for the Parsian’s defense robot is not so close) after analyzing the defense
routine of opponents. The test result is in Table 4.

Table 4. Test result before final

Opponent (log simulated) Free-kicks Goals Score Rate
Parsian 200 61 30.5%
ER-force 200 47 23.5%

During the final, our robots’ shoot speed broke the restriction frequently and one
robot was sent off. Luckily, our team wins with a narrow margin (Table 5).

Table 5. Final result

Opponent (final) Score
Parsian 4:1
ER-force 2:1

6 Conclusion

This paper presents our robot’s hardware and software framework. We implement the
reinforcement learning in our free-kick tactic. Based on the related work, we divide the
free-kick into some sub-tasks and write some hand-made routines for the learning
process. The results of the competition prove the efficiency of our strategy. In the mean-
time, we find that some generated policies are missions impossible, which never been
followed by robots fully. Therefore, we need to consider more constraints and the
mechanical needs to be more flexible. Our contribution lies in the realization of rein-
forcement learning in the SSL, which is a first step from simulation to reality. In the
future, we plan to imply more artificial intelligent technologies in SSL and make efforts
to the competition between human and robots in RoboCup 2050.

422

R. Wei et al.

References

10.

11.

12.

13.

. Mendoza, J.P., Simmons, R.G., Veloso, M.M.: Online learning of robot soccer free kick plans

using a bandit approach. In: ICAPS, pp. 504-508, June 2016

. Bai, A., Wu, F., Chen, X.: Towards a principled solution to simulated robot soccer. In: Chen,

X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500,
pp. 141-153. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39250-4_14

. Mendoza, J.P., Biswas, J., Zhu, D., Wang, R., Cooksey, P., Klee, S., Veloso, M.: CMDragons

2015: coordinated offense and defense of the SSL champions. In: Almeida, L., Ji, J.,
Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 106-117.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-29339-4_9

. Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup soccer keepaway.

Adapt. Behav. 13(3), 165-188 (2005)

. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in robocup soccer: a multiagent

reinforcement learning case study. In: Lakemeyer, G., Sklar, E., Sorrenti, Domenico G.,
Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 72-85. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74024-7_7

. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, vol. 1. MIT press, Cambridge (2005)
. Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2383-2388.
IEEE (2002)

. Ye, Y., Zhao, Y., Wang, Q., Dai, X., Feng, Y., Chen, X.: SRC team description paper for

RoboCup 2017 (2017)

. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function

decomposition. J. Mach. Learn. Res. 13(1), 63 (1999)

Ren, C., Ma, S.: Dynamic modeling and analysis of an omnidirectional mobile robot. In:
Intelligent Robots and Systems (IROS), pp. 4860—4865 (2013)

Kober, J., Miilling, K., Kromer, O., Lampert, C.H., Scholkopf, B., Peters, J.: Movement
templates for learning of hitting and batting. In: IEEE International Conference on Robotics
and Automation, pp. 1-6 (2010)

Stone, P.: Layered Learning in Multi-agent Systems: A Winning Approach to Robotic Soccer.
The MIT press, Cambridge (2000)

Gabel, T., Riedmiller, M.: On progress in RoboCup: the simulation league showcase. In:
Ruiz-del-Solar, J., Chown, E., Ploger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556,
pp- 36-47. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20217-9_4

http://dx.doi.org/10.1007/978-3-642-39250-4_14
http://dx.doi.org/10.1007/978-3-319-29339-4_9
http://dx.doi.org/10.1007/978-3-540-74024-7_7
http://dx.doi.org/10.1007/978-3-642-20217-9_4

	SRC: RoboCup 2017 Small Size League Champion
	Abstract
	1 Introduction
	2 Hardware
	3 Software Framework
	4 Reinforcement Learning
	4.1 MAXQ Decomposition
	4.2 Application in Free-Kick

	5 Performance Evaluation
	6 Conclusion
	References

