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Abstract. This paper presents a benchmark data set for evaluating ball detection
algorithms in the RoboCup Soccer Standard Platform League. We created a
labelled data set of images with and without ball derived from vision log files
recorded by multiple NAO robots in various lighting conditions. The data set
contains 5209 labelled ball image regions and 10924 non-ball regions. Non-ball
image regions all contain features that had been classified as a potential ball
candidate by an existing ball detector. The data set was used to train and evaluate
252 different Deep Convolutional Neural Network (CNN) architectures for ball
detection. In order to control computational requirements, this evaluation focused
on networks with 2–5 layers that could feasibly run in the vision and cognition
cycle of a NAO robot using two cameras at full frame rate (2 × 30 Hz). The results
show that the classification performance of the networks is quite insensitive to
the details of the network design including input image size, number of layers
and number of outputs at each layer. In an effort to reduce the computational
requirements of CNNs we evaluated XNOR-Net architectures which quantize the
weights and activations of a neural network to binary values. We examined
XNOR-Nets corresponding to the real-valued CNNs we had already tested in
order to quantify the effect on classification metrics. The results indicate that ball
classification performance degrades by 12% on average when changing from real-
valued CNN to corresponding XNOR-Net.

Keywords: Convolution neural network · Deep learning · Ball detection
XNOR-Net

1 Introduction

In the RoboCup Soccer Standard Platform League (SPL), ball detection has frequently
relied on hand-crafted heuristic approaches that rely on colour with some shape
constraints. The Softbank Robotics NAO robots that are used in the SPL have limited
computational resources and this is a principal reason why heuristic vision processing
approaches have been used to date.

In 2016, rule changes led to a change of the standard ball from an orange street
hockey ball to a 10 cm foam ball with the 32 panel black and white pattern typical of a
traditional soccer ball. The principal challenge of this new ball is that it does not have
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a unique colour on the field of play and for that reason colour alone cannot be used to
detect it. Furthermore the ball can be difficult to distinguish from parts of other robots
or when partly occluding field objects such as lines, goal posts, and robots. In general,
heuristic based vision processing approaches need to deal with many different conditions
identified through domain expertise and trial and error testing. Our own team’s heuristic
based ball detection was found to regularly require the addition of extra conditions,
tended to produce many false positives, and suffered from a limited ball detection range
(when compared to the previous orange ball detector). In 2017, the SPL rules have been
changed to permit play in natural and variable light conditions and this further challenges
the heuristic based approach.

Given the difficulties associated with heuristic based ball detection, a more sophis‐
ticated approach is required that is more robust and less dependent on colour and uniform
lighting. Deep Convolutional Neural Networks (CNNs) are recognised as the state of
the art for object recognition [1] and we expect that such state of the art approaches
should outperform the heuristic based algorithms that we and other teams have used to
date. Given a suitable dataset, a Deep Neural Network (of which CNNs are but one
possibility) can learn features of the ball that are robust to lighting changes, occulusion
and distractor conditions, and movement by the robot or the ball. Therefore the first
contribution of this paper is to publish an extensive labelled data set of ball images that
may be used for training and subsequent test of Deep Neural Networks and other
machine learning techniques.

One of the key factors that has enabled the advancement of Deep Neural Networks
(DNNs) has been the use of Graphical Processing Units (GPUs), with speed-ups on the
order of 10 to 30-fold in comparison to CPU only processing [2]. However, DNN
approaches are much less typical with low power embedded systems that do not have a
GPU due to the computational requirements. Therefore our second contribution is an
evaluation of multiple Deep CNN architectures that may be feasibly implemented on
the NAO robot and similar low power embedded systems. This evaluation focuses on
the classification metrics of the networks and the inference time per image.

There are a number of approaches that may be used to reduce the computational
requirements of Deep CNNs and these are described under related work. Our third
contribution is a specific evaluation of XNOR-Net [3], a particularly promising approach
for reducing computation and speeding up inference that quantizes both the network
weights and activations to binary values.

The remainder of this paper is organized as follows: Sect. 2 presents some related
work and motivates the evaluation of XNOR-Net. Section 3 describes the approach taken
to the dataset. Our network design approach is presented in Sect. 4. Section 5 contains
our results and discussion. Finally Sect. 6 presents our conclusion and future work.

2 Related Work

Most of the computation performed during training and application of DNNs results
from the multiplication of real-valued weights by real-valued activation values. Several
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approaches have been proposed to improve the computational efficiency of the network
at both training and inference time.

Shallow networks have been used to estimate deep networks. First Reference 4
showed that a large enough hidden layer of sigmoid units can approximate any decision
boundary. However for vision and speech processing, shallow networks generally can’t
compete with deep models [5].

Pre-trained deep networks can be compressed by pruning redundant weights in a
trained network to reduce the size of the network at inference time. Early methods for
pruning a network included weight decay [6], Optimal Brain Damage [7], and Optimal
Brain Surgeon [8]. More recent approached to pruning included Deep Compression [9],
which reduces the storage and energy required to run inference on large networks so
they can be deployed on mobile devices. Deep compression does this by removing
redundant connections and quantizing weights so that multiple connections share the
same weight, and then use Huffman coding to compress the weights.

Designing compact blocks that use fewer parameters at each layer of a deep network
can help to save memory and computational costs. Replacing the fully connected layer
with global average pooling was examined in the Network in Network architecture [10],
GoogLenet [11], and Residual-Net [12], which have achieved state-of-the-art results on
several benchmarks. The bottleneck structure (which uses 1 ×  1 convolutions) in
Residual-Net has been proposed to reduce the number of parameters and improve speed.

High precision parameters are not very important in achieving high performance in
deep networks [13] and many approaches have proposed quantizing parameters to
reduce the size of the network. The authors in [13] proposed to quantize the weights of
fully connected layers in a deep network by vector quantization techniques. They
showed that simply thresholding the weight values at zero decreases the top-1 accuracy
on ILSVRC2012 by less than 10%. Other work examined using ternary weights with
the weights restricted to +1/0/−1 [14] and networks that used ternary weights and 3-bits
activations [15].

Several researchers have gone a step beyond the above quantization approaches to
network binarization. Initially, the performance of highly quantized or binarized net-
works were believed to be very poor due to the destructive property of binary quanti‐
zation [16]. However, this was later shown not to be the case. BinaryConnect [17] trains
a DNN with binary weights during forward and backward propagations, but retains the
precision of the stored weights in which gradients are accumulated. The authors found
that BinaryConnect acted as a regularizer and obtained near state-of-the-art results on
MNIST, CIFAR-10 and SVHN. BinaryNet [18] was proposed as an extension of Bina‐
ryConnect. In BinaryNet both weights and activations are binarized, constrained to
either +1 or −1. If all operands of the convolutions are binary, then the convolutions
can be estimated by XNOR and bit counting operations. This quantization can also
applies to the fully connected layers. Again, this approach achieved nearly state-of-the-
art results on the MNIST, CIFAR-10 and SVHN datasets. XNOR-Net is another method
that binarizes the weights and activations in a network [3]. XNOR-Net differs from
BinaryNet in the binarization and the network structure. XNOR-Net was found to
outperform BinaryNet on large datasets (e.g. ImageNet).
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3 General Approach and Data Set

As a low power embedded processor, the Intel Atom processor of the NAO robot does
not have the compute power needed to execute standard DNN techniques applied to the
entire full resolution camera image at camera frame rate (usually 30 frames per second).
Therefore we assume a general vision pipeline in which a ball candidate region proposal
algorithm first scans the image for ball candidates using some unspecified but compu‐
tationally efficient technique (that may be heuristic based or not). We then assume that
one or a subset of proposed ball candidate regions are tested using a DNN to determine
which candidate (if any) best represents a ball.

To ensure a data set that is suitable for training and testing the DNN component of
this pipeline while maximizing flexibility for future developments the requirements for
a benchmark data set are as follows. The data should provide full images with labelled
region coordinates that specify ball and non-ball candidate regions (patches). In addition,
the data set should contain a wide variety of candidates (with and without ball) that span
the space of conditions under which a ball must be detected.

Our final data set comprises 6564 unique 640 × 480 images and it is available for
download at https://www.roboeireann.ie/research/SPLBallDataset.zip. From this set of
images, 5209 ball patches (candidate regions which contain a ball) and 10924 non-ball
patches (candidate regions which do not contain a ball) are extracted.

The data set is divided into training, validation and test sets such that 70% is used
for training, 15% for validation, and the remaining 15% for test. The ball patch data
includes candidates that were close (less than 3 m away) and far away from the robot
(3–8 m away). It includes candidates that were in free space on the field and candidates
that were near, partially occluding or, if appropriate, partially occluded by various
distractors (penalty spots, field lines and intersections, and robot parts). The data set
includes ball candidates where the robot and ball were both static and where the robot,
ball, or both were moving. Finally, the data includes ball candidates on various pitch
surfaces, some of which were under artificial light and others under natural light. The
non-ball patches include field lines and intersections, robot parts, goal parts, shoes, feet,
and hands. A selection of ball and non-ball patches can be seen in Fig. 1.

Fig. 1. Example of ball and non-ball patches extracted from full images in the dataset

The dataset was prepared from vision log files collected at RoboCup and in our
laboratory. In all, 31 log files were used. All log files were captured from NAO V4 and
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NAO V5 robots. The logs were captured from 9 different robots and the logs include a
mix of top camera and bottom camera. Bottom camera images were captured natively
at 640 × 480 pixels resolution whereas top camera images were captured at 1280 × 960
pixels resolution and then decimated to 640 × 480. Images used YUV format.

The ball pixels were manually labelled in images extracted from five of the log files.
The remaining log files were first processed through our existing heuristic based ball
detector. Using this approach, each image was always labelled with a non-ball patch
location, that is, the location of a candidate considered but ultimately rejected as a ball.
In addition the same image was labelled with a ball patch location if our existing ball
detector accepted one of the ball candidates it had processed. The patches associated
with each image were inspected afterwards and manually re-classified as ball or non-
ball as needed. This ensured that the data set was not negatively affected by weaknesses
(primarily false positives) in our existing ball detector.

Ball patches in the source images varied from 12 × 12 pixels (the minimum size we
permitted) up to 158 × 158 pixels. The luminance (Y) channel of each ball and non-ball
patch was extracted and resized to a standard size for later training and test of DNNs.
We used sizes of 12 × 12, 20 × 20, and 32 × 32 for reasons explained in Sect. 4.1.
Resizing was performed using the computationally efficient nearest-neighbor algorithm
since that is likely to be used in the vision pipeline on the NAO robot.

Simply extracting all ball and non-ball patches from consecutive image frames in
each log file can result in excessively correlated patches in the case that neither the robot
nor the ball is moving. To eliminate such correlation we included a ball or non-ball patch
from a given log file in the data set only if the mean absolute difference between its
pixels and those of the previously included patch exceeded a threshold of 10 luminance
points per pixel. This threshold was determined empirically by examining the mean
absolute difference of patches from consecutive frames throughout the data set. This
process eliminated 43.2% of the ball and non-ball patches due to correlation.

Many ball-patches that had already been included in the data set were based on a
bounding box that cropped the ball tightly and excluded extraneous information as a
consequence. However, it may not always be possible for the ball candidate proposal
algorithm to achieve this. Therefore, we augmented the data set by creating variants of
ball and non-ball patches that were more loosely cropped (and where the ball was smaller
in the patch as a consequence). To do this, we went back to the patches in the images
prior to resizing to standard patch sizes. The original bounding box around each patch
was first scaled by value between 1.1 and 1.5 chosen at random. The bounding box was
then translated by a random value between −0.33 to 0.33 times its new edge length in
the horizontal direction and similarly translated by a random value in the vertical direc‐
tion. If the original bounding box for a patch was at the border of the image it was
excluded from augmentation. The data set after augmentation contains 89% more
patches, consisting of 5209 ball and 10924 non-ball patches.
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4 Deep CNN Evaluation Design

The evaluation was designed to evaluate the performance of a large number of Deep
CNN networks that could be expected to execute quickly enough on the NAO robot. If
images from both cameras in a NAO robot are processed at their maximum rate then
there is a time budget of approximately 16.7 ms available to process each image and
perform any necessary perception and cognition activities. Therefore, a Deep CNN that
will be used in the vision pipeline can consume only a portion of that time budget. The
shorter the inference time, the more likely it is that the network can be applied to multiple
candidate patches rather than just one, so this makes it attractive to identify network
architectures which can make inference as quickly as possible while maintaining accu‐
racy.

We used the Caffe framework to develop and test our network architecture [19].
Caffe is a deep learning framework that facilitates rapid testing of different network
architectures because the network architectures are specified by configuration files. In
addition, Caffe can switch between using CPU and GPU depending on the host platform
which allows for fast training on a machine with a GPU with subsequent deployment to
another system having only a CPU, such as the NAO robot, for inference testing.

4.1 Network Design

There are a number of parameters that can be used to specify a network. One of the most
fundamental of these is the size of the input image patch. Our existing heuristic based
ball detector performs worst with balls that are more than 3 m from the robot. With a
640 × 480 pixel image the ball diameter at 3 m from the robot is approximately 20 pixels.
This decreases to 12 pixels between 5 m and 6 m and to 7–8 pixels at 8 m from the robot.
This suggested that patch sizes between 8 and 20 pixels square could be appropriate.
We are aware of two other RoboCup SPL teams that have considered Deep CNNs for
ball detection. Nao-Team HTWK reported a network that uses 20 × 20 pixel input
patches [20] while UT Austin Villa’s code release 2016 [21] used somewhat larger
32 × 32 pixel patches.

These input patch sizes are similar in size to those of the well-studied LeNet archi‐
tecture [22] which used 32 × 32 pixel patches. LeNet was one of the first convolutional
networks and operated on the MNIST dataset of hand-written digits. The authors
presented many different variants of LeNet with the most successful consisting of 2
convolutional layers followed by 2 fully connected layers, with 20 outputs in the first
layer, 50 outputs in the second layer, 500 in the third layer and 10 outputs for the final
layer for each of the 10 digits. It used 5 × 5 convolution kernels.

More recent work on CNNs such as VGGNet [23] and GoogLeNet [11] has intro‐
duced smaller kernel sizes. Smaller kernels have the advantage of capturing more detail
yet they can be stacked up to capture wider receptive fields (e.g. two 3 × 3 kernels in
different layers together have a receptive field of 5 × 5). For this reason we evaluated
designs with various kernel sizes. Network in Network [10] introduced the idea of 1 × 1
convolution kernels. Such a kernel can be used to reduce the number of parameters in
the network and may be used as a convolutional layer in the network, where it is known
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as a bottleneck, or to replace the fully connected layers that are often placed at the end
of a CNN (coupled with average pooling). Our evaluation included network designs that
replaced fully connected layers with 1 × 1 convolutional layers.

Batch Normalization [24] layers normalize the input batch by its mean and variance.
This technique was introduced to overcome internal covariate shift where the distribu‐
tion of each layer’s inputs changes during training as the parameters of the previous
layers change. The authors found that Batch Normalization speeds up training time,
achieving the same accuracy with 14 times fewer training steps as well being more robust
to high learning rates and parameter initialization. Rectified Linear Units (ReLUs) [25]
are now commonplace in many state-of-the-art deep neural networks. ReLUs are used
over the sigmoid function as they have a reduced likelihood of vanishing gradient. The
constant gradient of ReLUs results in faster learning.

In our Deep CNN designs, a convolutional block consists of convolution, Batch
Normalisation, ReLU activation and max pooling in that order. The last three of these
operations are optional and we tested networks both with and without these operations.

The Nao-Team HTWK network is similar to LeNet but with fewer outputs at each
layer. It comprises two convolutional layers using 5 × 5 kernels and max pooling
followed by two fully connected layers. We included four variations of the HTWK
network as the authors did not specify whether or not Batch Normalization or ReLU
activations were used. We also included the UT Austin Villa network which is a shal‐
lower network featuring just one convolution layer using 7 × 7 kernels and one fully
connected layer. In total we evaluated these 252 designs based on the parameter options
in Table 1.

Table 1. Deep CNN design parameters.

Design parameter Values tested
Layers 2 layer networks: 1 conv layer and 1 FC or 1 × 1 conv layer 4 layer

networks: 2 conv layers and 2 FC or 1 × 1 conv layers; 3 conv layers
and 1 FC or 1 × 1 conv layers
5 layer networks: 3 conv layers and 2 FC or 1 × 1 conv layers

Convolutional layers
Kernel size 1 × 1, 3 × 3, 5 × 5, 7 × 7 (7 × 7 only applied to 32 × 32 input patch)
Kernel dilation 1 or 2
Stride 1, 2, or 4
Output channels (kernels) 6, 8, 10 or 12
Pooling None, Max pooling, or Average Pooling (Average pooling used

only for the final 1 × 1 convolution layer)
Activation None or ReLU
Batch normalization Yes or no
Fully connected layers
Layer outputs 16, 32, or 48
Activation ReLU
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4.2 XNOR-Net

The XNOR-Net architecture binarizes activations and kernel weights within a network
so that the multiplications and additions in a convolution may be replaced by XNOR
and bit counting (pop count) operations. A key element required to successfully train an
XNOR-Net is the block structure of a convolutional layer which is different to block
structure in a typical real-valued CNN in order to reduce the loss of information [3]. The
modified convolution block for XNOR-Net therefore consists of the following blocks
in the order specified: Batch Normalization, Binary Activation, Binary Convolution, and
finally pooling.

The authors of XNOR-Net claim a dramatic 58× speedup when using XNOR based
convolution in comparison to a normal real-valued convolution. This number does
depend on the number of input channels and the kernel size and for our networks the
number would be smaller (e.g. for 12 channels and 3 × 3 kernels the theoretically
predicted speedup would be 40×). Achieving this speedup in practice is challenging but
the method is attractive and for this reason we evaluate the impact of the XNOR-Net
quantization on classification metrics for a subset of networks.

5 Results and Discussion

5.1 Real Valued Network Precision and Recall

Figure 2 summarizes the precision and recall classification metrics for all real-valued
networks tested on the test set. It is clear that the recall performance is relatively insen‐
sitive to the network design parameters in the networks under test (M = 97.2%, SD = 
1.5%). The precision performance is somewhat more variable. In a RoboCup setting,
false positive ball detections are often more harmful than false negatives since they may
lead to poor autonomous behavior decisions. Among the real-valued CNNs under test,
thirty-two had a precision greater than 99%. A common feature of the networks with
precision less than 90% was that none used ReLU activation or batch normalization.
(This is relevant to XNOR-Net designs as binarized networks are inherently incompat‐
ible with ReLU activation.)

Fig. 2. Precision and recall for all real valued CNNs. Networks 0–65 use 12 × 12 input images,
networks 66–241 use 20 × 20 input images, and the remainder use 32 × 32 input images. For each
input dimension, the networks are sorted in ascending order by number of multiplications.
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The network with the best overall classification performance measured by F1 score
(number 222) obtained 98.9% recall and 99.4% precision using a 5 layer network. With
this data set, the HTWK network with ReLU and normalization (number 206) demon‐
strated 96.1% precision and 98.6% recall, the HTWK network without ReLU and
normalization (number 204) scored a lower 92.4% precision with 96.6% recall, and UT
Austin Villa’s network (number 242) achieved 96.7% precision and 95.9% recall.

Inference times for the same networks when executed on the NAO robot are
presented in Fig. 3. These were only measured for real-valued networks since the unop‐
timized XNOR-Net implementation used in this work performed floating point multi‐
plications internally and provided no speed up. There is very little correlation between
classification performance in Fig. 2 and inference time in Fig. 3 (ρ = 0.13). This suggests
that, for ball detection, choosing a more complex network with a longer inference time
is unlikely to be of much benefit. The networks for each input dimension are presented
in order of the number of multiplications. The spikes in inference time correspond to
networks with a larger number of weighted layers and smaller convolution kernels. The
convolutions in the Caffe framework are performed using BLAS matrix multiplication,
as such a large number of multiplications can be combined into one matrix multiplica‐
tion. Therefore more BLAS calls with fewer multiplications per call will be slower.

Fig. 3. Inference time on the NAO for all real valued networks evaluated (0–65 use 12 × 12 input
images, 66–241 use 20 × 20 input images, and the remainder use 32 × 32 input images). Inference
times larger than 5 ms are not shown in the figure.

On the other hand, although network 66 produced the fastest inference time of 1.4 ms,
its balance of F1 score performance and inference time was in the bottom 18% of all
networks tested. In contrast, the inference time of network 222, which had the best
overall classification performance, was rather long at 4.8 ms.

The best balance of overall performance was obtained for network 16 whose infer‐
ence time was 2.05 ms and whose precision and recall were 98.1% and 98.0% respec‐
tively. The design of this network features a 12 × 12 input patch size and 2 convolutional
layers with twelve 3 × 3 kernels each. Each convolutional layer also included ReLU
activation, batch normalization and 2 × 2 max pooling. The convolutional layers were
followed by 2 fully connected layers having 32 and 2 outputs respectively.

For comparison, the inference times of the HTWK network with ReLU and normal‐
ization (number 206), HTWK network without ReLU and normalization (number 204),
and UT Austin Villa network (number 242) were 2.7 ms, 2.2 ms, and 2.3 ms respectively.
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5.2 XNOR-Net Performance

The classification statistics of a small number of XNOR-Net designs corresponding to
real-valued networks already tested were also evaluated. In general XNOR-Net designs
exhibited greater sensitivity to the training parameters chosen and often failed to
converge or had poor performance when training parameters derived from the equivalent
real-valued networks were used.

Figure 4 indicates that XNOR-Nets have degraded classification performance
compared to equivalent real-valued CNNs, as expected, and attain average scores that
are almost 12% lower. In general more complex networks with more weights in hidden
layers were more robust to the destructive effect of binary quantization. XNOR-Nets
use binary activation rather than ReLU activation and it is possible that this is a contrib‐
utor to the poor performance as the lack of ReLU activation was associated with the
worst precision statistics for real-valued networks.

Fig. 4. Comparison of F1 score for real-valued networks and corresponding XNOR-Net designs.

5.3 Recall Performance for Different Ball Detection Scenarios

We examined the recall performance of all networks in more detail by examining the
recall for different subsets of test images that were grouped by ball detection scenario.
The scenarios examined were ball far away (more than 3 m), ball in free space, ball
moving, ball in natural light, ball on or near a line, and ball occluding, occluded by, or
near a robot.

Figure 5 summarizes the results and shows that performance was quite consistent
across the scenarios. Nevertheless, moving balls or balls in natural light or far away
provide the biggest detection challenges to the networks. Somewhat surprisingly, the
scenarios that provide the greatest challenge to our existing heuristic based ball detec‐
tion, namely ball on line and ball on robot, are handled very well by the majority of
networks.
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Fig. 5. Recall performance of all real-valued networks across different ball detection scenarios.

6 Conclusion and Future Work

This work presented a data set for benchmarking ball detection in RoboCup soccer. Full
images with labelled ball and non-ball regions have been published so that the entire
vision pipeline may be tested, but in this work we focused on one particular aspect of
that pipeline, namely, classification of candidate regions as ball or non-ball using Deep
CNNs.

We trained a range of networks spanning a parameter space that varied the number
of weighted layers, the kernel sizes, and the numbers of outputs at each layer among
other parameters. We found that deeper networks with more channels in the hidden
layers do not necessarily lead to better accuracy but does increase inference time. We
conclude that the network classification performance is relatively insensitive to the
network design for this ball detection problem.

This work focused on analyzing the classification performance of XNOR-Net and
did not use an optimized implementation that could benefit from the binary weights and
activations. We found that XNOR-Net architectures had an F1 score that was 12% lower
than the corresponding real valued network on average. The theoretically predicted
speed up (by replacing real multiplications with binary XNOR) for our CNN layers is
between 29× and 40×. This speed up could allow more image patches to be evaluated
within the available time budget on the robot or to enable substantially more complex
networks to be feasibly executed. If more image patches can be evaluated during each
cycle, then this work could extend to classifying additional field objects such as robots
and goal posts to the architecture. For this reason we intend to examine the feasibility
of a sufficiently optimized implementation on the Intel Atom processor as part of our
future work.
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