
Interactive Machine Learning Applied to Dribble
a Ball in Soccer with Biped Robots

Carlos Celemin1(✉) , Rodrigo Perez1 , Javier Ruiz-del-Solar1 ,
and Manuela Veloso2

1 Advanced Mining Technology Center and Department of Electrical Engineering,
Universidad de Chile, Santiago, Chile

{carlos.celemin,rodrigo.perez.d,jruiz}@ing.uchile.cl
2 Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, PA 15213, USA
veloso@cmu.edu

Abstract. An Interactive Machine Learning (IML) approach for training a drib‐
bling engine for humanoid biped robots in RoboCup competitions (Standard
Platform League) is presented. The proposed dribbling approach solves two deci‐
sion problems: the determination of the dribbling direction and the calculation of
the walking velocities required for pushing the ball toward the desired direction.
Moreover, the prediction of the position of moving balls is used for improving
the dribbling performance, when it is needed to intercept a moving ball. A combi‐
nation of batch and incremental learning is used for shaping the policies of the
dribbling controller. Results obtained from previous RoboCup competitions, and
also from specific experiments, validate the proposed methods.

Keywords: Robot soccer · Learning from demonstration · Robot behavior
Human feedback

1 Introduction

In RoboCup soccer competitions, dribbling a ball is an important behavior needed for
either defensive or offensive playing. The challenge for a dribbling engine of a robot is
to navigate through the field and to avoid opponents, while keeping the ball possession;
i.e. the robot needs to push the ball to a target, but the path of the ball is also controlled.

Most of the works reporting dribbling mechanisms are in the context of the wheeled
robots [1, 2], and simulation leagues [3, 4]. For humanoid biped robots, most of the
decision making systems developed for dribbling are a combination of walking and
kicking behaviors, like the Finite State Machine (FSM) presented in [5] that is refined
with human feedback. The same strategy of dribbling is used in [6], where a complex
system of kicks is developed. Therefore, the robot walks toward the ball and according
to the situation, the most convenient kick is selected, i.e. the system is mostly supported
on the potential of the kicks. In contrast, in [7] is presented a system of In-walk kicks
that is combined with a very efficient gait. However, there are some other approaches
that do not divide the dribbling process between walking and kicking at all. For instance,

© Springer Nature Switzerland AG 2018
H. Akiyama et al. (Eds.): RoboCup 2017, LNAI 11175, pp. 363–375, 2018.
https://doi.org/10.1007/978-3-030-00308-1_30

http://orcid.org/0000-0001-8880-0966
http://orcid.org/0000-0002-9503-7783
http://orcid.org/0000-0003-2965-633X
http://orcid.org/0000-0001-6738-238X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00308-1_30&domain=pdf


[8] introduced a method for a gait that plans the steps of the walk for performing kicks
while walking. A RL and prior knowledge based strategy that pushes the ball without
kicks is presented in [9], it simply executes the task by walking against the ball. Our
first work related to dribbling with humanoid robots was based on the same concept for
pushing the ball [10]; a controller computes the velocity requests for the walking engine;
in that case the agent was trained with RL and a Genetic Algorithm. In [10] is proposed
to split the behavior into two simpler subtasks: Alignment for positioning the robot in
front of the ball and the target; and Ball-pushing for walking against the ball with the
appropriate velocity in order to keep its possession. In [11], the learning process of our
system was improved using Interactive Machine Learning (IML). We proposed
COACH, an interactive framework that allows users to provide corrective feedback to
a policy, while this is being executed. In that work, COACH was used for training the
sub-task Ball-Pushing. The results showed that the human advice during execution lets
the learning process to attain best performances in less time than the RL scheme
proposed in [10].

IML methods in general, and COACH [11] in particular, allow non-expert users
without deep knowledge of the system properties, to train and adapt systems to specific
requirements. This characteristic is important in situations where final users need to
adapt a system to new conditions. For instance, in the context of RoboCup teams,
wherein students join the project for short time periods, they work and focus on specific
problems, but sometimes it is required to change the behavior of external systems devel‐
oped by members who are no longer in the team. With this concern, we focused on
applying IML strategies that allow tuning the dribbling system by users who do not
know exactly how the decision-making system internally works.

In this work the methodology applied for training our last version of the dribbling
engine, based mostly on IML, is introduced. This new system does not split the dribbling
behavior in two sub-tasks, but faces the dribbling problem by addressing two main
decisions: “how to push the ball? and “where to push the ball?”. This last aspect was
not considered in our former works [10, 11], because in those works the dribbling direc‐
tion was always towards the opponent’s goal. The proposed dribbling system controls
the walking velocities for pushing the ball to a specific target, but the dribbling direction
while navigating considers the ball’s and opponents’ relative positions. The system is
also able to take into account the fact that a ball is moving, and to predict its position
for better approaching it.

The work is organized as follows: In Sect. 2, the modules that compose the proposed
dribbling engine are described. In Sect. 3, the IML approaches used for training the
dribbling modules are introduced. The proposed methodology is validated in Sect. 4,
using results collected during official RoboCup competition, but also with experiments
that test each proposed module. Finally, in Sect. 5 conclusions of this work are drawn.

2 Dribbling Strategy

As already mentioned, the dribbling task is split in two decision problems: where to
dribble?, which is related to decide the direction where the ball is pushed; and how to

364 C. Celemin et al.



dribble?, which is concerned to the computation of velocity requests necessary for
walking against the ball properly, pushing it towards the desired direction.

2.1 Dribbling Controller

This module is the responsible of solving the second decision problem mentioned in the
previous paragraph. The controller computes the velocity requests to the walking engine
in order to push the ball in the direction computed by the module that decides where to
dribble, i.e. the linear velocities vx, vy and the rotation velocity v𝜃. The state space is
represented with the angles and distances shown in Fig. 1, where 𝜌 is the robot-ball
distance, 𝛾 is the robot-ball angle, and 𝜑 is the dribbling direction-robot complementary
angle. In Fig. 1 the dribbling direction is the angle between the ball and the opponent
goal, but in other cases it could be a different direction (e.g. due to obstacles). The angles
𝛾 and 𝜑 have to be zero for the robot to be aligned to the ball and target, and the distance
𝜌 has to be low in order to keep possession of the ball.

Fig. 1. Variables observed by the robot.

The assumption taken in this controller is very intuitive. It is supposed that each
velocity axis is in charge of decreasing one of the variables 𝛾, 𝜑, and 𝜌. For instance, if
the robot rotates with v𝜃 proportionally to the angle 𝛾, the robot would be aligned to the
ball. If simultaneously the sideward velocity vy is proportional to the angle 𝜑, the robot
would walk by a circle centered in the ball position until it is aligned to the ball and the
target; when the robot is aligned, it can walk against the ball with velocity vx proportional
to the distance 𝜌 in order to walk faster when it is far, and slower when it is near for
pushing to a close distance. In [10] was discussed a simple linear proportional controller
based on the previous description, but in order to walk more effective paths, that work
proposed to use a Takagi-Sugeno Fuzzy System as non-linear approximation for
mapping from states to velocities, keeping the same assumption but with state dependent
gains for the proportional controller.

2.2 Dribbling Direction Computation

The system described before had the target fixed in the center of the opponent’s goal,
and the direction to dribble was always towards that target. Another system is required
to compute different directions in order to dribble towards the goal, but avoiding colli‐
sions and decreasing the risk of pushing the ball out from the field. Then, this system is
related with the problem where to dribble? Since the robot can detect the opponents

Interactive Machine Learning Applied to Dribble a Ball in Soccer 365



with its camera, it is possible to have a map of obstacles. However, differently to other
leagues, in the SPL it is a very challenging problem to model and predict the behavior
of the opponent team in this adversarial environment. Therefore, in our UChile Robotics
Team, the opponents’ positions are tracked but are assumed static for navigation
purposes. Due to this assumption, and that there is no prediction of the future states, the
navigation problem with the dribbling is not tackled with long term path planning
approaches, rather, the strategy is to compute the dribbling direction in every time step,
based on the updated state of the environment (i.e. the positions of the other robots and
the ball).

The dribbling is not a typical navigation problem, since it has to be controlled the
robot and ball positions, taking into account that the ball is moved with a very constrained
strategy. Moreover, in our approach, the trajectory to go and push the ball is defined by
the controller; and a high-level system computes the direction that the ball has to follow.
Our proposal is inspired by the potential fields [12, 13] methods in which there are
attracting and repulsive objects, whose forces depend on the distances. Nevertheless,
this application has some specific characteristics that make necessary two considera‐
tions:

1. The attractive force of the opponent goal is constant, and does not decrease with the
distance.

2. The opponents and posts are obstacles that need to be avoided. The repulsive force
works when the robot starts dribbling far from any obstacle. However, it is possible
that a dribbling episode starts with the ball in the possession of an opponent, i.e. the
ball can be just beside the feet of the opponent. In those cases, the direction that
minimizes the possibility of collision is an angle orthogonal to the line between the
opponent and the ball.

In Fig. 2 are depicted some examples to show why is better to push the ball perpen‐
dicularly to the opponent when the ball is in the opponent’s possession. The blue arrow
is the direction to dribble with minimum probability of collision with the opponent (red
jersey), taking into account that the goal is in the right hand side of the picture. In
Fig. 2(a) the ball is beside the opponent; the trajectories red and yellow are likely to
make a collision with the opponent before and after pushing the ball respectively. The
red and gray directions can be the result of combining the attraction of the goal and the
repulsive force of the obstacle. The gray path could be the case when the goal is very
far and its force has low incidence whereas the obstacle has a high repulsive force. The
result is a dangerous movement that definitely would end up with a punishment for our
robot. In Fig. 2(b) the ball is very close to the opponent but behind it. In that case the
repulsive force and the attraction of the goal in the right hand side of the picture would
sum to the gray direction, which would end up with the robot dribbling by the path of
the same color, which is also dangerous. On the other hand, the blue direction is the
safest to take possession of the ball and keep dribbling to the goal in the right.

366 C. Celemin et al.



Fig. 2. Ball dribbling paths when the ball is close to the opponent (blue path is desired). (Color
figure online)

With the previous considerations it is proposed a system that computes a sum of
weighted candidate angles to dribble. Each candidate angle is related to an object of
interest in the field. These objects are: the center of the opponent’s goal, the goalposts,
the final line of the field, and every opponent-robot in the field. The weights of each
angle are obtained as the product between two factors: an importance weight ko associ‐
ated to each kind of object, and a distance measure between the object and the ball. The
distance measure is calculated with the Euclidean distance evaluated in a Gaussian
kernel, and then its values are in the range [0–1]; being this value close to one if the
object is very near to the ball. The weight of the candidate angle to the goal depends
only on its importance weight kg, as shown in (1).

The candidate angles to dribble depend on each object: for the final line the candidate
direction is an angle orthogonal to the line with direction to the own side of the team.
This is for minimizing the risk of pushing the ball out of the field when it is very close
to the line. The candidate direction of the opponent goal is the angle between the ball
and the goal; this is the only attracting object. As described before the obstacles (oppo‐
nent robots and goalposts) have candidate directions, which are perpendicular to the
obstacle-ball line. Since there are two possible orthogonal angles, the chosen candidate
is the one that has lower difference with the opponent’s goal direction. The linear
combination of the angles is normalized by the weights, for computing the dribbling
direction D:

D =
agkg +

∑No

o=1 aowo

kg +
∑No

o=1 wo

=

agkg +
∑No

o=1 aokoexp

(

−
d2

o

2𝜎2
o

)

kg +
∑No

o=1 koexp

(

−
d2

o

2𝜎2
o

) (1)

where ag is the angle of the ball to the opponent goal, kg is the constant importance weight
associated to the goal, ao is the dribbling candidate angle associated to the o-th interest
object in the field, wo is the distance dependent weight associated to each interest object.
This is computed with the importance weight ko and the Gaussian distance that takes the
Euclidean distance do between the ball and the object o, and has an associated standard
deviation 𝜎o to each type of object that defines a security distance, where the object has
more influence on the dribbling direction.

Interactive Machine Learning Applied to Dribble a Ball in Soccer 367



With this direction D, the dribbling controller of Sect. 2.1 computes the walking
velocities based on the variables depicted in Fig. 1, but the angle 𝜑 is computed with
respect to D rather than the angle between the ball and the center of the target.

2.3 Using the Dribbling Behavior for Approaching a Moving Ball

The dribbling controller is always used when the robot is attacking even without having
possession of the ball, e.g. when the robot is trying to “steal” the ball from an opponent
or intercepting a pass done by either a teammate or an opponent. In order to address this
challenge properly, the robot should move to a predicted position of the moving ball,
like human players do.

Thus, the strategy applied in this work is to keep the described structure of the drib‐
bling controller, and to track a predicted position of the ball instead of the actual one;
the robot predicts the trajectory of the ball and evaluates if at certain point it is possible
to intercept it. In case it is possible, then the robot moves to that position. Alternatively,
the robot can move to a position that is close to the predicted final position of the ball.

3 Interactive Training of the Dribbling Engine

As it was explained in Sect. 1, it is necessary to make this system easily trainable by
non-experts, since it can be required to change the parameters of the system during the
competition before a game. For instance, when the walking engine is modified, the
dribbling controller needs to be tuned again. The same happens when the team’s strategy
needs to be fixed for facing the characteristics of a specific opponent team. Interactive
approaches are used for letting the users to adapt the dribbling controller module and
the dribbling direction computation module easily using incremental and batch learning.
Although the dribbling engine works by combining the dribbling controller and the
dribbling direction computation modules, both are trained independently for the ease of
the process. Then, for training the dribbling controller the direction to dribble is set
always toward the opponent goal. For training the dribbling direction computation
module, demonstrations can be provided using static game situations, without the need
of running the dribbling controller (Sect. 3.2).

3.1 Incremental Learning for the Dribbling Controller

In [11] COACH was used for training policies with corrective feedback provided by
human teachers during execution time. This feedback is a binary advice of how the
executed continuous action has to be modified (increased or decreased). Then, using
Stochastic Gradient Descent (SGD) the framework updates the policy; therefore the next
time step the policy has a new set of parameters. In [11] the framework was presented
for shaping approximations based on linear models of radial features. However, those
principles can be applied to different types of approximation like the fuzzy model used
in this problem. In Algorithm 1 is described how COACH works. More details can be
seen in [11].

368 C. Celemin et al.



The users may have an insight of how an action can be modified for obtaining a better
performance, but he/she hardly knows precisely the magnitude of the required correc‐
tion. With the previous assumption, COACH updates the policy setting a constant error
magnitude e, whereas its sign is given from the feedback binary signal.

For training a policy, lines 4-11 of Algorithm 1 are executed every time step during
execution: first the agent observes the world (line 4), then the policy is computed and
the action executed (lines 5–6), it checks if there is human advice: h has a value of 1 if
the teacher says “increase the action”, −1 for “decrease the action” and 0 if there is not
feedback. If there is feedback, the error assumption is computed (line 10) and the SGD
update of the policy is carried out taking into account specific considerations of the used
approximation model. This framework is applied while the user sets the environment
with several varied conditions of ball and robot initial positions, then provide feedback
in order to shape the policy for achieving a desired behavior.

3.2 Training of the Dribbling Direction Computation Module

In the dribbling direction model expressed by (1) it is necessary to tune the parameters
ko for all the interest objects mentioned in Subsect. 2.2, and their deviations 𝜎o, which
define the distance where each object o-th has more influence. The procedure for training
the module consists in two alternative stages (the second one is optional): first, a batch
learning process based on a dataset of instances demonstrated by the user is executed.
Then, if the user considers necessary a local update, a second stage of tuning is carried
out based on corrective feedback provided incrementally by the user with COACH
(Algorithm 1 is applied). The second stage of tuning is not required when the user is
satisfied by the resulting model of the batch learning process.

Batch Stage. It is collected a dataset of several static game situations wherein the user
selects the desired direction to dribble. An interface shows an inactive scenario and
allows the user to change the positions of the ball, and the opponent robots, but also to
set the desired dribbling direction. Then, the positions (input) and direction (output) are
attached as an instance of the demonstrations dataset. In other words, for gathering the
direction demonstrations it is not necessary to have the dribbling controller running, and
this can be done without active robots. With the dataset of situations and decisions, it is

Interactive Machine Learning Applied to Dribble a Ball in Soccer 369



performed an optimization process for obtaining a set of parameters that fits the model
to the data based on a Genetic Algorithm; in this case a set of parameters is represented
by an individual that is evaluated by the fitness function selected for this problem and
discussed below.

For selecting an appropriate fitness functions it must be taken into account that
human teacher demonstrations can include instances that are noisy, inconsistent or
ambiguous [14, 15]. For instance, in this context users can provide instances with
different directions to dribble for similar states. The inconsistent data can be considered
as outliers in the demonstrations set that do not need to be fitted with the model. However,
with the typical mean square error (MSE) that takes into account only second order
statistics and that is used in regressions, it is assumed Gaussianity in the error distribu‐
tion. Then, the shortcoming of this is that, the outliers can have a large impact in the
process of matching the model to the demonstrations.

Some works have used information-theoretic measures to face similar problems. For
example [16] applies the minimization of the error entropy (MEE), which is equivalent
to minimize the distance between the PDF of the desired data and the model output. This
helps to fit the model to most of the data, and drops the importance of outliers that are
far from the PDF, which contribute to have a high MSE. For this reason we selected as
fitness function the MEE criterion described in [16].

Incremental Stage. After the batch stage, or if the user considers to fix the system’s
behavior for a specific situation, the user sets the particular ball and opponent positions
with the interface used for collecting the demonstrations, and provides corrective feed‐
back in the angles domain. While the advice is provided, COACH updates the model’s
parameters of (1) using SGD, with the derivatives of the model with respect to the
parameter po, which can be ko or 𝜎o in (2), where h is the human advice for increasing
or decreasing the action, and 𝜂 is the step size.

Δpo = 𝜂h
𝜕D

𝜕po

(2)

4 Experiments and Results

In participations to RoboCup competitions, the developed dribbling engine has had an
important role as our (UChile Robotics Team) main attack strategy, but also in the
defensive plays. Since most of the scored goals (GF) were derived from dribbling plays
(65% in RoboCup 2016), we compare in Fig. 3 the average scored and allowed goals
per match in the last 3 participations respecting the performance of 2013, when the team
did not have a dribbling behavior. In RoboCup 2014, we used our first dribbling approach
[10], and the average number of GF increased in 50%, while the allowed (GA) was
reduced by 15%. In RoboCup 2015 and 2016 the dribbling strategy used was the
presented in this work, except for the prediction strategy for approaching moving balls.

370 C. Celemin et al.



For those years the average of GF raised in ~120%, while the percentage of the GA
decreased in about 55%. Data of these results is available online1.

Fig. 3. Percentage of average goals per match compared to the performance of 2013.

Experiments were carried out for evaluating the performance of the different modules
of the dribbling controller, and presented in the next sub sections. Some illustrations of
the proposed system are shown in the video2.

4.1 Dribbling Without Ball Interception

The performance of the dribbling controller trained with the approach described in [10],
and used in the RoboCup 2014 competitions, is compared with the dribbling controller
described in this work, and used in the RoboCup 2015 and 2016 competitions. The
comparison is done in terms of time to dribble to a target, time that the robot lost ball
possession while dribbling because it pushes the ball very far, and distance required to
dribble to a target (the shorter the better). Several static scenarios with different initial
ball and robot positions were run to dribble with the controllers obtained with both
approaches. In Fig. 4 is shown the increase obtained in these performance indices when
the dribbling controller presented in this work is used. As it can be observed, the
proposed dribbling controller and its learning method obtains a policy that reduces 12%
the time for dribbling from the initial point to the target, reduces in 50% the periods of
time that the ball possession is lost, and also reduces to the half the additional walked
distance with respect to the length of the line given by the connection of the points initial
robot position-initial ball position-target position, in order to push the ball.

Fig. 4. Performance indices of the dribbling learned with the proposed strategy with respect to
the original scheme.

1 http://www.tzi.de/spl/bin/view/Website/WebHome.
2 https://youtu.be/Oc9dMag4RFw.

Interactive Machine Learning Applied to Dribble a Ball in Soccer 371

http://www.tzi.de/spl/bin/view/Website/WebHome
https://youtu.be/Oc9dMag4RFw


4.2 Dribbling Direction Computation

This section presents experiments intended to show why it is more convenient to use an
Entropy-based measure when learning using data demonstrated by human teachers. In
the experiments, a user provides a set of demonstrations of the desired dribbling direc‐
tions using the interface based on the simulator [17], and the MEE and the MSE are
compared as fitness functions of a genetic algorithm that learns the parameters of (1)
that fit to the data. The batch optimization process consists of 30 runs of the evolutionary
algorithm executed for each cost function. After each optimization process, both cost
functions are computed. In a second experiment, some outliers are added to the original
dataset, ambiguous directions are associated to instances that represent similar situations
of inputs already contained in the original set. The best performance of each experiment
is presented along with the mean and standard deviation.

In Table 1, the results of the experiments with the original data demonstrated by the
user show that when the optimization minimizes the MEE, it obtains even lower indices
of MSE with respect to the achieved by the optimizer that minimizes the squared error.
In the second experiment, the error metrics are increased as expected, but the same trend
of the first experiment is obtained with wider differences, since in almost all the opti‐
mization runs using MEE as objective function, the found parameter sets computed
lower MSE indices than the best of the obtained solutions from the optimization
processes using the MSE cost function.

Table 1. Results of the batch learning for the dribbling direction module

Dataset: 
Demonstrated

Mean Square Error Entropy Error
Fitness Function Min Mean Std Min Mean Std

MSE 0.0245 0.0275 0.0028 0.0295 0.0370 0.0072
MEE 0.0215 0.0248 0.0024 0.0231 0.0307 0.0057

Dataset:
Demonstrated 

+ 
Outliers

Square Error Entropy Error
Fitness Function Min Mean Std Min Mean Std

MSE 0.1132 0.1144 0.0011 0.0835 0.0873 0.0033
MEE 0.1064 0.1082 0.0013 0.0794 0.0845 0.0037 

The MSE fitness function faced more local minima than the MEE, and outliers played
an important role on it. The MEE is a convenient performance metric for these cases
wherein a model needs to be fitted to data provided by human users that time to time
could be inconsistent or ambiguous.

In Fig. 5 are shown the dribbling directions computed by the system trained with the
original dataset in part (a). The arrows show the angle computed to dribble if the ball
position is at the beginning of the arrow; the small blue points are the positions of oppo‐
nent robots.

372 C. Celemin et al.



Fig. 5. Response of the dribbling direction computation system. (a) After the Batch Learning.
(b) after local update with incremental learning using COACH

As a proof of concept of the incremental stage, a second experiment was executed
for modifying the resulting policy of the batch process that used the original database
of the previous experiment. In this case, the dribbling direction strategy is modified
incrementally with COACH only for the specific cases when the ball is close to the final
line, specifically between the corners and the goalposts, in order to make the robot to
dribble more towards the front of the goal than dribbling from the side directly to the
goal. This can be more convenient because in front of the goal there are more probabil‐
ities to score a goal after a kick. In part (b) of Fig. 5 it is shown the response of the same
system after tuning it, it is possible to see that the final line now has more influence for
rejecting the ball to the own side. This change of strategy was executed for some specific
situations, while the behavior keeps the same performances for the rest of the situations.
Ball Interception

The strategy of intercepting the ball was validated in five different scenarios where
the robot was standing in the middle of the field, and the ball was thrown from the
opponent’s goal to the other side of the field. Each scenario had an initial ball position
and velocity, and the robot had to intercept the ball and start to dribble toward the oppo‐
nent goal. The proposed strategy of going to the predicted ball position and the previous
strategy of going to the current position without prediction were compared; ten execu‐
tions per scenario were run for computing the average performance. The episodes were
stopped when the robot got possession of the ball and was aligned to the target. The
evaluation indices were the duration of the episode, and the final distance between the
ball and the target, since this distance would be larger in the cases in which the robot
does not intercept the ball at all. As it can be observed in Fig. 6, in most of the cases the
time decreased between 5 to 40% when using ball prediction. In cases like the first
experiment, wherein the robot lasts almost the same time to intercept the ball with both
approaches, the distance of the ball to the target was smaller at the end of the episode
when the ball prediction was used; i.e. for that case, it takes the same time to intercept
the ball using both systems, but with the approach based on the ball prediction, the robot
intercepts the ball in a better position because the decision was: “trying to anticipate the
ball movement”.

Interactive Machine Learning Applied to Dribble a Ball in Soccer 373



Fig. 6. Performance indices for five cases of ball interception

5 Conclusions

This work presented the dribbling strategy and its learning approach that has led to
UChile Robotics Team to compete and qualify to the semifinals stage during RoboCup
2015 and 2016. The paper presents some comparative results obtained in the competi‐
tions, but also experiments that quantify the benefits of the training methods for devel‐
oping the complete dribbling policy.

The reported experiments confirm that IML approaches are an excellent alternative
to solve decision problems in which there is not enough capacity and observability to
model the environment, and to compute a plan to achieve a goal. IML techniques benefit
from the knowledge that users have about the problem, which can be shared with the
agents easily, without the need of coding that knowledge.

Moreover, the results of the process for learning the dribbling direction module
showed that using the EEM metric as cost function is useful in contexts where human
teachers provide demonstrations that can be contaminated with ambiguous data. Addi‐
tionally, it was shown that COACH makes possible to adjust the dribbling direction
module behavior for specific game situations, without the necessity of gathering a new
set of demonstrations and executing the batch process.

References

1. Li, X., Zell, A.: Nonlinear predictive control of an omnidirectional robot dribbling a rolling
ball. In: Proceedings of IEEE International Conference Robotics Automation, pp. 1678–1683
(2008)

2. Riedmiller, M., Hafner, R., Lange, S., Lauer, M.: Learning to dribble on a real robot by success
and failure. In: Proceedings of IEEE International Conference Robotics Automation, pp.
2207–2208 (2008)

3. Carvalho, A., Oliveira, R.: Reinforcement learning for the soccer dribbling task. In: 2011
IEEE Conference Computational Intelligence Games, CIG 2011, pp. 95–101 (2011)

4. Macalpine, P., Depinet, M., Stone, P.: UT Austin Villa 2014: RoboCup 3D simulation league
champion via overlapping layered learning. In: Proceedings of Twenty-Ninth AAAI
Conference Artificial. Intelligence, pp. 1–7 (2015)

5. Meriçli, Ç., Veloso, M., Akin, H.: Task refinement for autonomous robots using
complementary corrective human feedback. Int. J. Adv. Robot. Syst. 8, 68–79 (2011)

6. Barrett, S., Genter, K., Hester, T., Quinlan, M., Stone, P.: Controlled kicking under
uncertainty. In: The Fifth Workshop on Humanoid Soccer Robots at Humanoids (2010)

374 C. Celemin et al.



7. Laue, T., Röfer, T., Gillmann, K., Wenk, F., Graf, C., Kastner, T.: B-human 2011 –
eliminating game delays. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup
2011. LNCS (LNAI), vol. 7416, pp. 25–36. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32060-6_3

8. Alcaraz-Jiménez, J.J., Herrero-Pérez, D., Martinez-Barberá, H., Alcaraz, J., Herrero, D., Mart,
H.: A closed-loop dribbling gait for the standard platform league. In: Workshop on Humanoid
Soccer Robots of the IEEE-RAS International Conference on Humanoid Robots (Humanoids)
(2011)

9. Latzke, T., Behnke, S., Bennewitz, M.: Imitative reinforcement learning for soccer playing
robots. In: Lakemeyer, G., Sklar, E., Sorrenti, Domenico G., Takahashi, T. (eds.) RoboCup
2006. LNCS (LNAI), vol. 4434, pp. 47–58. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74024-7_5

10. Leottau, L., Celemin, C., Ruiz-del-Solar, J.: Ball dribbling for humanoid biped robots: a
reinforcement learning and fuzzy control approach. In: Bianchi, Reinaldo A.C., Akin,
H.Levent, Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992,
pp. 549–561. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3_45

11. Celemin, C., Ruiz-del-Solar, J.: Interactive learning of continuous actions from corrective
advice communicated by humans. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.)
RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 16–27. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-29339-4_2

12. Damas, Bruno D., Lima, Pedro U., Custódio, Luis M.: A modified potential fields method for
robot navigation applied to dribbling in robotic soccer. In: Kaminka, Gal A., Lima, Pedro U.,
Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 65–77. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45135-8_6

13. Tang, L., Liu, Y., Qiu, Y., Gu, G., Feng, X.: The strategy of dribbling based on artificial
potential field. In: 2010 3rd International Conference Advanced Computer Theory
Engineering, vol. 2, pp. 307–311 (2010)

14. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from
demonstration. Rob. Auton. Syst. 57, 469–483 (2009)

15. Chernova, S., Thomaz, A.L.: Robot learning from human teachers. Synth. Lect. Artif. Intell.
Mach. Learn. 8, 1–121 (2014)

16. Erdogmus, D., Principe, J.C.: An error-entropy minimization algorithm for supervised
training of nonlinear adaptive systems. IEEE Trans. Signal Process. 50, 1780–1786 (2002)

17. Laue, T., Spiess, K., Röfer, T.: SimRobot – a general physical robot simulator and its
application in robocup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup
2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006). https://doi.org/
10.1007/11780519_16

Interactive Machine Learning Applied to Dribble a Ball in Soccer 375

http://dx.doi.org/10.1007/978-3-642-32060-6_3
http://dx.doi.org/10.1007/978-3-642-32060-6_3
http://dx.doi.org/10.1007/978-3-540-74024-7_5
http://dx.doi.org/10.1007/978-3-540-74024-7_5
http://dx.doi.org/10.1007/978-3-319-18615-3_45
http://dx.doi.org/10.1007/978-3-319-29339-4_2
http://dx.doi.org/10.1007/978-3-319-29339-4_2
http://dx.doi.org/10.1007/978-3-540-45135-8_6
http://dx.doi.org/10.1007/11780519_16
http://dx.doi.org/10.1007/11780519_16

	Interactive Machine Learning Applied to Dribble a Ball in Soccer with Biped Robots
	Abstract
	1 Introduction
	2 Dribbling Strategy
	2.1 Dribbling Controller
	2.2 Dribbling Direction Computation
	2.3 Using the Dribbling Behavior for Approaching a Moving Ball

	3 Interactive Training of the Dribbling Engine
	3.1 Incremental Learning for the Dribbling Controller
	3.2 Training of the Dribbling Direction Computation Module

	4 Experiments and Results
	4.1 Dribbling Without Ball Interception
	4.2 Dribbling Direction Computation

	5 Conclusions
	References




