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Abstract. Recent advances in computer vision have made the detection
of landmarks on the soccer field easier for teams. However, the detec-
tion of other robots is also a critical capability that has not garnered
much attention in the RoboCup community so far. This problem is well
represented in different RoboCup Soccer and Rescue Robot Leagues.
In this paper, we compare several two-stage detection systems based
on various Convolutional Neural Networks (CNN) and highlight their
speed-accuracy trade off. The approach performs edge based image seg-
mentation in order to reduce the search space and then a CNN validates
the detection in the second stage. We use images of different humanoid
robots to train and test three different CNN architectures. A part of
these images was gathered by our team and will be publicly available.
Our experiments demonstrate the strong adaptability of deeper CNNs.
These models, trained on a limited set of robots, are able to successfully
distinguish an unseen kind of humanoid robot from non-robot regions.

Keywords: Robot detection · Robot vision · Humanoid robots
Deep learning · Convolutional neural networks · Image segmentation

1 Introduction

The RoboCup federation’s ambitious goal for 2050 was stated in 1997: a team
of fully autonomous humanoid robot soccer players shall win the soccer game
against the winner of the World Cup [1,13]. In order to reach this purpose,
researchers are working on multidisciplinary problems to solve various challenges
of creating such intelligent systems. Also, annual RoboCup competitions within
different leagues make incremental steps toward this big goal [2]. A crucial part
of these systems is extracting information from visual data, i.e., computer vision.
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A lot of literature has been published on robot vision. Some of them were focusing
on mutual identification of robots and more generally, robot body detection. This
becomes vital in disaster situations like rescue robots where robots may want
to identify each other using camera feed alone, but is also important in soccer
where a player must be able to identify teammates and opponents. Humanoid
robot teams, in RoboCup Soccer Leagues, must recognize landmarks on the
field, e.g., field lines and the goal posts, for localization. But in this paper, we
focus on body detection of other robots to present and compare different robust
detection systems to detect and classify robot bodies in realistic and complex
environments.

Our proposed systems are set to use deep learning methods for validating the
results of image segmentation approaches and are expected to stay accurate in
different light conditions. Results of this work have been evaluated and tested on
three different hardware ranging from a mini computer used by our humanoid
robots to a high-speed powerful server equipped with GPU. This leads to a
comparison between accuracy and computation speed which is important for
robots since there is always a limited computational power available.

The main contributions of this paper are:

1. Using and evaluating three Convolutional Neural Networks with differ-
ent parameters and iterations to create robust body detection systems for
humanoid robots.

2. Using different hardware to provide a speed-accuracy trade off since hetero-
geneous robots are going to use the system in realistic scenarios.

3. Two step procedure for body detection using image segmentation and CNN.
4. A novel data set of three different humanoid robots captured in realistic

conditions and positions from the upper camera of robot in action.
5. Presenting experimental evidence that the proposed system can be used in

action by robots in real life scenarios.

The rest of the paper consists of 6 sections: Sect. 2 presents an overview of
methods and approaches in object recognition of robots and Deep Learning clas-
sification. Section 3 explains our method in detail. Section 4 contains information
about the used dataset, experimental result and evaluation metrics are reported
in detail in Sects. 5 and 6. Finally, in Sect. 7, we provide a summary of the work,
conclusions and directions for the future work.

2 Related Works

To deal with the vision problem for 2050, the team of robots needs to understand
the environment at least as the human team understands it. Limited dynamic
range of cameras, changes in color due to brightness, and distortions due to
motion make it impossible to create a robust system which classifies robot bod-
ies using raw color information only. In this section, we briefly review the previ-
ous works on image segmentation and robot detection. For image segmentation,
despite the fact that color segmentation is common in RoboCup Soccer Leagues
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[3], Ma et al. [4] presented an approach as the “edge flow” which facilitates
the integration of color and texture for this purpose. Fan et al. [5] integrated
the results of color-edge extraction and SRG (seeded region growing) to provide
homogeneous image regions with accurate and closed boundaries. On the other
hand, Ren et al. [6] presented Region Proposal Networks (RPNs) that simulta-
neously predicts the object bounds and objectness scores at each position. In
the case of robot detection and object recognition, Sabe et al. [7] focused on
obstacle detection by plane extraction from data captured by stereo vision. In
another work, Farazi et al. [8] used color segmentation of the black color range for
obstacle detection. They also implemented a robot detector using a HOG feature
descriptor in the form of a cascade classifier for detection of the igus� Humanoid
Open Platform [9]. Arenas et al. [10] used a nested cascade of boosted classifiers
for detection of Aibo robot and humanoid robots. Shangari et al. [11] evalu-
ated combinations of cascade classifier with Histograms of Oriented Gradients,
Local Binary Patterns, and Haar-like features for Humanoid robots detection
and believed LBP feature is more useful than the others. Albani et al. [12] used
a Deep Learning approach for NAO robot detection in the RoboCup Standard
Platform League (SPL). Here, we show that this approach can be extended to
deal with different types of robots and be used in other RoboCup leagues.

3 Proposed Approach

Figure 1 shows an overview of our system. A wide-angle YUV422 image is the
input of our system. A human first trains the system by selecting seed pixels
to create a look up table for color classification. This table is a mapping from
YUV color space to a set of specific colors and assigns a class label (green, black,
white or unknown) to each pixel.

To use edge based image segmentation and Hough Transform algorithms, we
compute a binary image which describes edge intensity of each pixel in a given
raw image. A gray-scale image is generated by extraction of the Y channel.
Afterward, we compute the Scharr gradient operator (explained in [19]) on the
gray-scale image which results in the desired binary image. The new images
compared to the camera image can be seen in Fig. 2.

3.1 Segmentation and Bounding Box Extraction

Reduction of the search space can increase the performance of the whole system,
both in terms of time and accuracy. In order to find regions of interests (ROI),
first a vertical scan line runs inside the binary image to find pixels with high
edge intensity [19]. These edge spots build ROI boundaries and have the potential
to construct the same shape. Then, based on two different approaches we find
related spots and connect them to build the boundary of the objects, like a ball,
the lines, the goals and the obstacles. The first approach is Euclidean distance
of selected spots in the X and Y directions, and the second one is the size and
the color of the area around them that can help identify which object the spots
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Fig. 1. Overview of our system. (Color figure online)

Fig. 2. Left: system input in RGB format. Middle: color classified image. Right: binary
image. (Color figure online)

belong to. For example, in the case of obstacle detection, after perception of
the black area around two adjacent spots inside the big green space and due to
the fact that robots should have black feet in the RoboCup humanoid league, it
can be concluded that considered boundary and it’s edge spots belongs to the
robot feet. To extract the proposed region for a robot, our algorithm moves from
the region of the detected feet to left and right until a continues green region
according to a threshold is being detected. Then, we crop a rectangle from left
most points to right most points in the X axis and from foot to horizontal
line (computed from robot structure) in the Y axis. Regions inside other bigger
bounding boxes are omitted from the set of proposed regions (see Fig. 3).

3.2 Validation

As shown in Fig. 3, regions extracted in the previous section may contain false
positives. Similar to work in [12], we have a validation step in which a CNN is
used to omit irrelevant outputs from detected regions. Three different architec-
tures were used in our work, namely LeNet, SqueezeNet and GoogLeNet [21].
These models were chosen because of their computational efficiency. The train-
ing of deep CNNs requires a lot of data and computational power. Preparing this
amount of training data for every specific task is very time consuming and even
may not be possible in some domains. Furthermore, not every one has access to
high end GPUs to train these models. To solve this problem, pretrained networks
on other datasets with different tasks are fine-tuned on a new relatively small
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Fig. 3. Top left: input image. Top right: color classified image. Edge spots are blue
colored, related spots are connected with red lines. Bottom left: true positive robot
region. Bottom middle: proposed region is inside the bottom left region and will be
ignored. Bottom right: false positive robot region. (Color figure online)

dataset for a new task. Here we fine-tune SqueezeNet and GoogLeNet architec-
tures that are pretrained on the Imagenet Dataset, for our validation task.

3.3 CNN Architectures

A brief overview of all three architectures is in Fig. 4. First architecture we used
is a variant of the LeNet architecture [17]. The main difference is the number of
output filters in first convolution, second convolution and first fully connected
layer which are set to 20, 50 and 500 respectively. Also one fully connected
layer is deleted. GoogLeNet is the second architecture used in this work. This
model is a deep Convolutional Neural Network which makes use of layers called
Inception modules [14]. The most recent architecture that focuses on decreasing
model parameters is the work of Iandola et al. [16]. In a similar approach to [14],
fire modules are used to construct the model. In their work the same level of
accuracy as AlexNet [21] is achieved with 50x fewer parameters. This model is
both fast and accurate which makes it a good choice to run on humanoid robots.

Fig. 4. View of three architectures with convolution and fully connected layers vis-
ible only. Depth of an architecture is the count of convolution and FC layers. Fire
and Inception modules has depth of 2 convolutions. Therefore LeNet, SqueezeNet and
GoogLeNet have depths of 4, 18 and 22 respectively.
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4 Dataset Description

To train our models we gathered some images from three different robots (Fig. 5)
inside a soccer field. 500 images of each robot were selected. Additionally, 500
images from SPQR NAO Image dataset [12] were chosen randomly. We also used
2000 random nonrobot images from their dataset. This 2000 robot and 2000
nonrobot images were used as our dataset. We make images of our humanoid
robots publicly available and encourage others to add images of their robots to
help gather a larger dataset of different kinds of humanoids for future research.

Fig. 5. Sample images of the used dataset. The left one is a sample image of ARASH.
In middle we have DARWIN and the right one is KIARASH.

5 Implementation Details for CNNs

Our implementation is based on Caffe [15]. Training parameters are mainly the
same as in original papers. Details are presented in Table 1. We trained LeNet
from scratch. GoogLeNet and SqueezeNet were fine-tuned. SqueezeNet v1.1 was
chosen from different versions of SqueezeNet because of less computation.

6 Experimental Results

In our validation step, we aim to distinguish between robot and non-robot
regions. Therefore the problem is being modeled as a binary classification prob-
lem. Different experiments were conducted to evaluate performance of all three
models. First, the robot and non-robot images were shuffled separately and 66%
of each were chosen for training, the rest were chosen for the test set. Due to
randomness in training procedure, each model was trained 5 times and average
accuracy of those models on the test set is reported. According to the presented
results in Table 2, all models perform well in this dataset (LeNet a bit lower
than the other two). Also, the variance of accuracies in all architectures is rea-
sonably low.

Time needed for every forward pass of all three architectures is reported in
Table 3. Our measurements were on two different GPUs (GTX 980 with 2048
Cuda cores and GT 620 m with 96 Cuda cores), a general purpose laptop CPU
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Table 1. Training parameters details. Batch size for SqueezeNet and GoogLeNet were
limited due to lack of memory. Learning Rate is multiplied by gamma every stepsize.

LeNet SqueezeNet GoogLeNet

Iteration 8000 2000 2000

Batch size 256 64 32

Base learning rate 0.001 0.001 0.0001

Learning rate policy Step Step Step

Step size 1000 500 500

Gamma 0.1 0.1 0.1

Momentum 0.9 0.9 0.9

Table 2. Average and maximum accuracy of 5 models of each architecture on the test
set. Images of all robots in train and test set.

Average accuracy Max accuracy

LeNet 94.83 97.94

GoogLeNet 99.90 100

SqueezeNet 100 100

Table 3. Average test time of every architecture on different platforms.

GTX980 (ms) GT620m (ms) Core i5 2.50GHz (ms) Celeron dual Core 1.10GHz (ms)

LeNet 0.25 0.76 2.36 4.17

GoogLeNet 6.97 48.77 602.73 1754.03

SqueezeNet 2.13 16.63 48.55 173.33

and a humanoid robot CPU. As expected, LeNet is faster than deeper archi-
tectures by a large margin. SqueezeNet is faster than GoogLeNet and runs in
a reasonable time on Humanoid robot’s system. Time for a forward pass of
GoogLeNet increases dramatically when using a CPU only.

We set two other experiments to compare the efficiency of the three archi-
tectures in a more difficult situation. First, all Images of ARASH were being
separated from other robots and were given as a test set. 500 random non-robot
images were also being added to the test set. Trained models on images from
other three robots showed promising results on test set (see Table 4). Same exper-
iment was conducted using the Robotis OP robot. This time average accuracy
of LeNet decreased about 20% (see Table 5). Other two deeper models were still
performing well on test set. We can see that SqueezeNet and GoogLeNet can
be trained on Images of limited types of robots and distinguish between unseen
new robot and non-robot regions. This is closer to capabilities of human vision
(we can distinguish between robot and non-robot by seeing samples from two
or three kinds of robots). Due to high variance of LeNet on this experiment, we
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Table 4. Average and maximum accuracy of 5 models of each architecture on test set.
No images of ARASH in training set.

Average accuracy Max accuracy

LeNet 97.56 98.9

GoogLeNet 99.4 99.8

SqueezeNet 99.3 99.3

Table 5. Average and maximum accuracy of 5 models of each architecture on test set.
No images of Darwin in training set.

Average accuracy Max accuracy

LeNet 76.4 97.3

GoogLeNet 99.4 100

SqueezeNet 100 100

would like to report a 95% normal-based Confidence Interval of accuracy, which
is equal to (56.4, 96.4).

To further evaluate discriminative power of models we changed the problem
to a multiclass classification problem. Five classes of non-robot, Arash, Robotis-
OP, kiarash and NAO were considered. 500 images from every class were chosen.
We used 60% of data for training and other 40% for testing the models. Base
Learning rate for GoogLeNet was set to 0.00001. Average accuracy of models in
Table 6 shows that increasing difficulty of the problem by increasing number of
classes lowers the accuracy of weaker models. GoogLeNet’s discriminative power
can be higher than SqueezeNet if proper amount of data is available. Here, due
to low amount of data and higher number of parameters in GoogLeNet relative
to SqueezeNet the former shows poor performance relative to latter. Generally,
due to superior performance of SqueezeNet in speed and accuracy, this model is
a good choice for difficult classification tasks in a humanoid robot.

Table 6. Average and maximum accuracy of 5 models of each architecture on test set
in multiclass problem.

Average accuracy Max accuracy

LeNet 54.06 58.80

GoogLeNet 86.46 89.00

SqueezeNet 98.60 98.60

For more precise comparison, confusion matrices of multiclass experiment are
reported below in formula 1, 2 and 3 noted as CM. Also, precision, recall, and
f1-score are reported in Tables 7, 8 and 9, respectively.
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CM GoogLeNet =

⎡
⎢⎢⎢⎢⎣

nonrobot ARASH DARWIN KIARASH NAO

nonrobot 186 4 2 4 4
ARASH 0 132 0 16 52

DARWIN 3 4 188 4 1
KIARASH 0 5 20 174 1

NAO 1 0 2 11 186

⎤
⎥⎥⎥⎥⎦

(1)

CM SqueezeNet =

⎡
⎢⎢⎢⎢⎣

nonrobot ARASH DARWIN KIARASH NAO

nonrobot 200 0 0 0 0
ARASH 0 186 0 1 13

DARWIN 0 0 200 0 0
KIARASH 0 0 0 200 0

NAO 0 0 0 0 200

⎤
⎥⎥⎥⎥⎦

(2)

CM LeNet =

⎡
⎢⎢⎢⎢⎣

nonrobot ARASH DARWIN KIARASH NAO

nonrobot 49 3 144 4 0
ARASH 0 129 4 67 0

DARWIN 0 0 195 5 0
KIARASH 0 5 2 193 0

NAO 1 7 128 64 0

⎤
⎥⎥⎥⎥⎦

(3)

Table 7. Evaluation results for GoogLeNet.

Class Precision Recall F1-score Support

nonrobot 0.98 0.93 0.95 200

ARASH 0.91 0.66 0.77 200

DARWIN 0.89 0.94 0.91 200

KIARASH 0.83 0.87 0.85 200

NAO 0.76 0.93 0.84 200

Avg/Total 0.87 0.87 0.86 1000

Table 8. Evaluation results for SqueezeNet.

Class Precision Recall F1-score Support

nonrobot 1.00 1.00 1.00 200

ARASH 1.00 0.93 0.96 200

DARWIN 1.00 1.00 1.00 200

KIARASH 1.00 1.00 1.00 200

NAO 0.94 1.00 0.97 200

Avg/Total 0.99 0.99 0.99 1000
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Table 9. Evaluation results for LeNet.

Class Precision Recall F1-score Support

nonrobot 0.98 0.24 0.39 200

ARASH 0.90 0.65 0.75 200

DARWIN 0.41 0.97 0.58 200

KIARASH 0.58 0.96 0.72 200

NAO 0.00 0.00 0.00 200

Avg/Total 0.57 0.56 0.48 1000

7 Conclusion

In this study, we presented and tested various real time two-stage vision systems
for humanoid robot body detection with promising results. Our pipeline performs
a preprocessing stage to reduce search space and a CNN validates the results of
ROI detection. The variety of structures and colors in humanoid robots (unlike
standard platforms) demands more flexible detection systems than using color
segmentation alone, so it makes sense to use edge based image segmentation.
Also, this approach performs well in different lighting conditions in the context of
time and accuracy. For validation step, we used three different CNNs and tested
each on three different hardware, comparison of these systems lets us choose
the proper system regarding our application and available computational power.
Also, a novel dataset of humanoid body images is published with this project.
All the images and sample codes are available on project’s repository under
https://github.com/AUTManLab/HumanoidBodyDetection. As future works,
we are planning to develop a fast and complete humanoid body classifier using
a more customized CNN architecture.
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