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Abstract. Accelerating the acquisition of magnetic resonance imaging
(MRI) is a challenging problem, and many works have been proposed
to reconstruct images from undersampled k-space data. However, if the
main purpose is to extract certain quantitative measures from the images,
perfect reconstructions may not always be necessary as long as the images
enable the means of extracting the clinically relevant measures. In this
paper, we work on jointly predicting cardiac motion estimation and seg-
mentation directly from undersampled data, which are two important
steps in quantitatively assessing cardiac function and diagnosing cardio-
vascular diseases. In particular, a unified model consisting of both motion
estimation branch and segmentation branch is learned by optimising the
two tasks simultaneously. Additional corresponding fully-sampled images
are incorporated into the network as a parallel sub-network to enhance
and guide the learning during the training process. Experimental results
using cardiac MR images from 220 subjects show that the proposed
model is robust to undersampled data and is capable of predicting results
that are close to that from fully-sampled ones, while bypassing the usual
image reconstruction stage.

1 Introduction

Cardiac magnetic resonance imaging (MRI) provides qualitative and quantita-
tive information of the morphology and function of the heart, which are crucial
for assessing cardiovascular diseases. Both cardiac MR image segmentation and
motion estimation are essential steps for the dynamic exploration of the cardiac
function. However, one limitation of the cardiovascular MR is the low acquisi-
tion speed due to both hardware and physiological constraints. Most approaches
consider undersampling the data in k-space and then reconstruct the images
[7,9]. Nevertheless, in most cases, perfect reconstructions are not necessary as
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long as the images allow to obtain accurate clinically relevant parameters such
as changes in ventricular volumes and the elasticity and contractility properties
of the myocardium. Therefore, instead of firstly recovering non-aliased images,
it may be more effective to estimate the final results directly from undersampled
MR data and also to make such estimations as accurate as possible.

In this paper, we propose to learn a joint deep learning network for cardiac
motion estimation and segmentation directly from undersampled cardiac MR
data, bypassing the MR reconstruction process. In particular, we extend the joint
model proposed in [6] which consists of an unsupervised cardiac motion estima-
tion branch and a weakly-supervised segmentation branch, where the two tasks
share the same feature encoder. We investigate the network’s capability of pre-
dicting motion estimation and segmentation maps simultaneously and directly
from undersampled cardiac MR data. The problem is formulated by incorporat-
ing supervision from fully sampled MR image pairs in addition to the composite
loss function as proposed in [6]. Simulation experiments have been performed
on 220 subjects under different acceleration factors with radial undersampling
patterns. Experiments indicate that results learned directly from undersampled
data are reasonably accurate and are close to predictions from fully-sampled
data. This could potentially lead to future works that enable fast and accurate
analysis in an integrated MRI reconstruction and analysis pipeline.

1.1 Related Work

Cardiac segmentation and motion estimation are well studied problems in med-
ical imaging. Traditionally, most approaches consider these two tasks separately
[1,11,12]. However, it is known that segmentation and motion estimation prob-
lems are closely related, and optimising these two tasks jointly has been proven to
improve the performance for both challenges. Recently, Oksuz et al. [5] proposed
a joint optimisation scheme for registration and segmentation using dictionary
learning based descriptors, which enables better performance for both of these
ill-posed processes. Qin et al. [6] proposed a unified deep learning model for both
cardiac motion estimation and segmentation, where no motion ground truth is
required and only temporally sparse annotated frames in a cardiac cycle are
needed.

However, there are only a limited number of works that focus on obtain-
ing segmentation maps and motion fields directly from undersampled MR data.
One direction of the research is on the application-driven MRI [2], where an inte-
grated acquisition-reconstruction-segmentation process was adopted to provide
a more efficient and accurate solution. Schlemper et al. [10] expanded on the
idea of application-driven MRI and presented an end-to-end synthesis network
and a latent feature interpolation network to predict segmentation maps from
extremely undersampled dynamic MR data. Our work focuses on the scenario
where motion fields and segmentation maps can be jointly predicted directly from
undersampled MR data, bypassing the usual MR image reconstruction stage.
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2 Methods

Our goal is to predict the simultaneous motion estimation and segmentation
directly from undersampled cardiac MR images and make sure that such pre-
dictions are as accurate and efficient as possible. Here we extend the effective
unified model (Motion-Seg Net) proposed in [6] to adapt to the application
for undersampled MR data. The proposed network architecture consists of two
branches which perform motion estimation and segmentation jointly, and a well-
trained sub-network for fully-sampled images is incorporated to provide addi-
tional supervision during the training process. Note that at test stage, only the
undersampled sub-network is needed, and no fully-sampled data is required. The
overall architecture of the model is shown in Fig. 1.

Fig. 1. The overall schematic architecture of proposed network for joint estimation of
cardiac motion and segmentation directly from undersampled data. (a) (b) The Motion-
Seg net adopted from [6]. (c) Proposed architecture for training the Motion-Seg net on
undersampled data. US: undersampled, FS: fully-sampled

2.1 Unsupervised Cardiac Motion Estimation from Undersampled
MR Image

Inspired by the success of the joint prediction network proposed in [6] which
effectively learns useful representations, here we propose to adapt the network
to undersampled MR data. In contrast to the fully-sampled case where only self-
supervision is required for the motion estimation, it is difficult for the undersam-
pled images to merely rely on self-supervision, i.e., the intensity difference, due
to the noises caused by aliased patterns. To address this, we propose to incorpo-
rate their corresponding fully-sampled image pairs as an additional supervision
to guide the training for the undersampled images, and a schematic illustration
of the model is shown in Fig. 1(a) and (c).
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The task is to find an optical flow representation between the target under-
sampled frame IUS

t and the source undersampled frame IUS
t+k, where the output is

a pixel-wise 2D motion field ΔUS representing the displacement in x and y direc-
tions. We exploit a modified version of the network proposed in [6] for the rep-
resentation learning, in which it mainly consists of three components: a Siamese
network for the feature extraction of both target frame and source frame where
the encoder is adapted from VGG-16 Net; a multi-scale concatenation of features
from pairs of frames motivated by the traditional multi-level registration method
[8]; and a bilinear interpolation sampler that warps the source frame to the tar-
get one by using the estimated displacement field ΔUS = (ΔUSx,ΔUSy; θUS

Δ ),
where the network is parameterised by θUS

Δ which is learned directly from under-
sampled MR data. Note that a RNN unit could be potentially incorporated to
propagate motion information along the temporal dimension [6], and we will
leave it as one of our future work.

Due to the severe aliased patterns existing in the undersampled MR images,
it is not practical to train the spatial transformer network purely based on min-
imising the intensity difference between the transformed undersampled frame
and the target undersampled frame. To address this, we propose to introduce
the fully-sampled image pairs as a supervision for the training. Specifically,
instead of warping the undersampled source image, here we propose to trans-
form the corresponding fully-sampled source image, which can be expressed as
I

′FS
t+k (x, y) = Γ{IFS

t+k(x + ΔUS
t+kx, y + ΔUS

t+ky)}. Then the network can be trained
by optimising the pixel-wise mean squared error between IFS

t and I
′FS
t+k . To

ensure local smoothness, we maintain the regularisation term for the gradi-
ents of displacement fields which uses an approximation of Huber loss pro-
posed in [3,6], namely H(δx,yΔUS) =

√
ε +

∑
i=x,y(δxΔUSi2 + δyΔUSi2), where

ε = 0.01. Therefore, the loss function can be described as follows:

Lm =
1

Ns

∑
(It,It+k)∈S

[‖IFS
t − I

′FS
t+k ‖2 + αH(δx,yΔUS

t+k)
]
, (1)

where Ns stands for the number of sample pairs in the training set S, and α
is a regularisation parameter to trade off between image dissimilarity and local
smoothness.

However, it is observed that for heavily undersampled images, such weak
supervision in Eq. 1 is not sufficient. Therefore, in order to push the learning
results from undersampled data to be as accurate as that from fully-sampled
data, we additionally introduce a pixel-wise mean squared error loss on the dis-
placement fields between the estimation from undersampled data (ΔUS

t+k) and
that from fully-sampled one (ΔFS

t+k). Since only the motion of anatomical struc-
tures is of interest, here we propose to mask the region of interests (ROI) by
utilising the predicted segmentation maps from fully-sampled data to allow that
only errors from ROI can be backpropagated to contribute to the learning. The
proposed loss term can be expressed as LΔt+k

= ‖(ΔUS
t+k − ΔFS

t+k) ∗Mt‖2, where
Mt is a one-hot mask (1 for ROI, and 0 for background) generated from the
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segmentation maps from frame t of fully-sampled images. Thus, the overall loss
function for motion estimation is as follows:

Lm =
1

Ns

∑ [‖IFS
t − I

′FS
t+k ‖2 +αH(δx,yΔUS

t+k)+β‖(ΔUS
t+k −ΔFS

t+k) ∗Mt‖2
]
, (2)

in which an additional trade-off parameter β is introduced. Note that no ground
truth displacement fields are required during the training, thus the motion is
still estimated unsupervisedly.

2.2 Joint Cardiac Motion Estimation and Segmentation from
Undersampled MR Image

Previous works have shown that motion estimation and segmentation tasks are
complementary [4,6,13]. Therefore, here we couples both tasks for the joint pre-
diction from undersampled MR data. The schematic architecture of the unified
model is shown in Fig. 1.

The joint model consists of two branches: the motion estimation branch
proposed in Sect. 2.1 which introduces additional supervision from fully sam-
pled images, and the segmentation branch based on the network proposed in
[1], where both branches share the joint feature encoder (Siamese style net-
work) as shown in Fig. 1. As images are only temporally sparse annotated,
predictions from corresponding fully-sampled images are used as supervision
for those unlabelled data. Therefore a categorical cross-entropy loss Ls =
−∑

l∈L yGT
l log(f(xl;ΘUS)) − ∑

n∈U ŷFS
n log(f(xn;ΘUS)) on labelled data set

L and unlabelled data set U is used for segmentation branch, in which we define
xl and xn as the input data, yGT

l as the ground truth, ŷFS
n is predictions from

fully-sampled images and f is the segmentation function parameterised by ΘUS .
Different from the loss function as stated in [6], here we don’t employ the loss
Lw between the warped segmentations and the target, as we find that for under-
sampled cases, minimising Lw could introduce more noises and uncertainties
into the network training presumably because of the less accurate predictions.
We empirically observed that this could lead to a small performance degradation
especially for the segmentation branch.

As a result, the overall loss function for the joint model can be defined as:

L = Lm + λLs, (3)

where λ is a trade-off parameter for balancing these two tasks. Lm can be of the
form of Eq. 1 or Eq. 2, and we will examine their comparisons in experiments.

3 Experiments and Results

Experiments were performed on 220 short-axis cardiac MR sequences from
UK Biobank study. Each scan contains a sequence of 50 frames, where man-
ual segmentations of left-ventricular (LV) cavity, the myocardium (Myo) and
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the right-ventricular (RV) cavity are available on ED and ES frames. A short-
axis image stack typically consists of 10 image slices, and the pixel resolution
is 1.8 × 1.8 × 10.0 mm3. Since only magnitude images are available, here we
employed a phase map synthesis scheme proposed in [10] to synthetically gener-
ate phase maps (smoothly varying 2D sinusoid waves), in order to convert magni-
tude images to complex valued images and to make the simulation more realistic.
In experiments, the synthesised complex valued images were back-transformed
to regenerate k-space samples. The input undersampled images were generated
by randomly undersampling the k-space samples using uniform radial undersam-
pling patterns. For pre-processing, all training images were cropped to the same
size of 192×192, and intensity was normalized to the range of [0,1]. In our experi-
ments, we split the data into 100/100/20 for training/testing/validation. Param-
eters used in the loss function were set to be α = 0.001, β = 1, and λ = 0.01,
which were chosen via validation set. Fully-sampled sub-network parameters
were loaded from [6], and we train the undersampled network using Adam opti-
miser with a learning rate of 0.0001. Data augmentation was performed on-the-
fly, with random rotation, translation, and scaling.

As work [6] has already shown that the joint model can significantly outper-
form model with single branch, in this work, we mainly focus on the evaluation
of the performance on undersampled data. We first evaluated the performance of
motion estimation by comparing the proposed model with a B-spline free-form
deformation (FFD) algorithm1 [8], and the results are shown in Table 1. Here
we examined the effect of different losses on the model’s performance, where
we termed method using Lm with the form of Eq. 1 as Proposed-A, and the
one using Eq. 2 as Proposed-B. Motion fields were estimated between ES and
ED frame, and mean contour distance (MCD) and Hausdorff distance (HD) were
computed between the warped ES segmentations and ED segmentations. Results
on fully-sampled (FS) images are presented in Table 1 as a reference. It can be
observed that proposed methods consistently outperform FFD on all accelera-
tion rates with p � 0.001 using Wilcoxon signed rank test, and is able to produce
results that are close to the fully-sampled images. Furthermore, it can also be
noticed that for higher acceleration rates (6× and 8×), Proposed-B produces
significantly better results than Proposed-A (p � 0.001). This is reflected by
the fact that higher undersampling rates result in more aliased images, there-
fore a relatively strong supervision (LΔ) is more needed to guide the learning in
comparison to images with less aliasing (3×).

We further evaluated the segmentation performance of the model on under-
sampled data with different acceleration factors. Results reported in Table 2
are Dice scores computed with manual annotations on LV, Myo, and RV, as
well as the clinical parameter ejection fraction (EF). It has been observed that
Proposed-A and Proposed-B didn’t differ significantly in terms of segmenta-
tion performance, so here we only report results obtained from Proposed-B in
Table 2. It can be seen that though there is a relatively small drop of performance
as acceleration factors increase, the network is robust to train on undersampled

1 https://github.com/BioMedIA/MIRTK.
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Table 1. Evaluation of motion estimation accuracy for undersampled MR data with
different acceleration factors in terms of the mean contour distance (MCD) and
Hausdorff distance (HD) in mm (mean and standard deviation). Loss function using
Lm(Eq. 1) is termed as Proposed-A, and the one using Lm(Eq. 2) is termed as Proposed-
B. Bold numbers indicate the best results for different undersampling rates.

Method MCD HD

LV Myo RV LV Myo RV

FS FFD 1.83 (0.53) 2.47 (0.74) 3.53 (1.25) 5.10 (1.28) 6.47 (1.69) 12.04 (4.85)

Joint model [6] 1.30 (0.34) 1.19 (0.26) 3.03 (1.08) 3.52 (0.82) 3.43 (0.87) 11.38 (4.34)

3× FFD 2.19 (0.49) 2.54 (0.74) 3.94 (1.38) 6.27 (1.64) 6.62 (1.72) 13.92 (5.03)

Proposed-A 1.32 (0.40) 1.23 (0.31) 3.41 (1.22) 3.53 (0.89) 3.59 (1.10) 12.69 (4.47)

Proposed-B 1.37 (0.45) 1.23 (0.31) 3.44 (1.22) 3.59 (0.98) 3.55 (1.10) 12.69 (4.45)

6× FFD 2.80 (0.77) 2.74 (0.75) 4.48 (1.46) 7.83 (2.30) 7.26 (2.26) 15.63 (5.19)

Proposed-A 2.10 (0.80) 1.44 (0.38) 3.84 (1.27) 4.79 (1.40) 3.98 (1.26) 13.45 (4.49)

Proposed-B 1.74 (0.68) 1.34 (0.35) 3.68 (1.27) 4.20 (1.30) 3.77 (1.21) 13.08 (4.49)

8× FFD 3.29 (0.97) 3.09 (0.99) 4.94 (1.67) 9.40 (2.70) 8.48 (3.05) 17.16 (5.75)

Proposed-A 2.30 (0.97) 1.52 (0.46) 4.02 (1.37) 5.19 (1.71) 4.16 (1.32) 13.79 (4.60)

Proposed-B 1.79 (0.70) 1.44 (0.39) 3.76 (1.30) 4.36 (1.40) 3.97 (1.28) 13.27 (4.55)

data, and the clinical parameter predicted directly from undersampled data is
very close to that from fully-sampled images. Furthermore, a visualisation result
of the network predictions on 8× accelerated data in a cardiac cycle is shown in
Fig. 2, where myocardial motion indicated by the yellow arrows were established
between ED and other time frames. Overall, predictions directly from undersam-
pled MR data are reasonably accurate, despite some small underestimations.

Table 2. Evaluation of segmentation performance under different acceleration factors
in terms of Dice Metric (mean and standard deviation) and average percentage (%)
error for ejection fraction (EF) compared with fully-sampled data.

Acceleration LV Myo RV EF

FS [6] 0.9348 (0.0408) 0.8640 (0.0295) 0.8861 (0.0453) -

3× 0.9303 (0.0450) 0.8596 (0.0309) 0.8884 (0.0433) 2.68%

6× 0.9214 (0.0475) 0.8424 (0.0310) 0.8804 (0.0456) 3.56%

8× 0.9141 (0.0487) 0.8260 (0.0343) 0.8658 (0.0523) 4.16%

4 Conclusion

In this paper, we explored the joint motion estimation and segmentation directly
from undersampled cardiac MR data, bypassing the usual image reconstruction
stage. The proposed method takes advantage of a unified model which shares
the same feature encoder for both tasks and performs them simultaneously. In
particular, we additionally introduced a parallel well-trained sub-network for
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Fig. 2. Comparison visualisation results for simultaneous prediction of motion estima-
tion and segmentation on data with undersampling rates 8. Myocardial motions are
from ED to other time points (numbers on the top right). Segmentations are overlaid
on fully-sampled data for better visualisation.

corresponding fully-sampled MR image pairs as a supervision source for training
undersampled data, in order to push the predictions from undersampled data
to be as accurate as possible. We showed that the proposed network is robust
to undersampled data, and results predicted directly from undersampled images
are close to that from fully-sampled ones, which could potentially enable fast
analysis for MR imaging. In the future, it is also interesting to explore methods
that are independent of aliased patterns and acceleration factors.
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