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Abstract. In dynamic contrast enhanced (DCE) MRI, temporal and
spatial resolution can be improved by time-resolved angiography with
interleaved stochastic trajectories (TWIST) thanks to its highly accel-
erated acquisitions. However, due to limited k-space samples, the
periphery of the k-space data from several adjacent frames should be
combined to reconstruct one temporal frame so that the temporal res-
olution of TWIST is limited. Furthermore, the k-space sampling pat-
terns of TWIST imaging have been especially designed for a generalized
autocalibrating partial parallel acquisition (GRAPPA) reconstruction.
Therefore, the number of shared frames cannot be reduced to provide
a reconstructed image with better temporal resolution. The purpose of
this study is to improve the temporal resolution of TWIST using a novel
k-space deep learning approach. Direct k-space interpolation is per-
formed simultaneously for multiple coils by exploiting spatial domain
redundancy and multi-coil diversity. Furthermore, the proposed method
can provide the reconstructed images with various numbers of view shar-
ing. Experimental results using in vivo TWIST data set showed the accu-
racy and the flexibility of the proposed method.
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1 Introduction

DCE-MRI is useful for the diagnosis of stroke or cancer because it provides infor-
mation on the physiological characteristics of the tissue by imaging the flow of the
contrast agent [16]. In particular, TWIST [11] imaging gives improved temporal
and spatial resolution thanks to its highly accelerated acquisition. In TWIST,
the high frequency regions of the k-space from multiple temporal frames should
be combined to obtain uniformly sub-sampled k-space data so that GRAPPA
[4] can be applied to reconstruct the data. However, the temporal resolution of
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TWIST is not a true one due to the view sharing of several temporal frames. In
addition, since the k-space sampling patterns are designed for GRAPPA recon-
struction, the number of view sharing is fixed after the data acquisition.

In our previous works [3], we proposed to improve temporal resolution of
TWIST via k-space interpolation using ALOHA [8,12,14] which synergistically
combines parallel MRI (pMRI) and CS-MRI. However, since the multiple matrix
factorization is essential for applying ALOHA, the computational cost for the
reconstruction of 4-dimensional TWIST imaging was too expensive. In addi-
tion, if the number of view sharing is not enough, the spatial resolution can be
degraded. Therefore, new approach is required to overcome this limitation.

This paper aims at enhancing the temporal resolution of TWIST imaging by
reducing the number of view sharing using deep learning. Furthermore, we pro-
posed the algorithm that can generate reconstructed images at multiple number
of view sharing to exploit the trade-off between spatial and temporal resolution.
For our purposes, we need to deal with two major technical issues. First, unlike
most of the deep learning approaches for MR reconstruction [6,10,13,15,17],
our deep network needs to learn the k-space interpolation kernels for reconstruc-
tion at various number of view sharing. Second, with reduced view sharing, the
reconstructed images using GRAPPA cannot be regarded as ground-truth data,
so there is no label data for learning.

Based on the recent mathematical finding of the link between a deep con-
volutional neural network and a data-driven decomposition of Hankel matrix
[18], here we propose a k-space deep network using the basic idea of ALOHA
for parallel MRI [9], which is implemented in the k-space domain by stacking
multi-coil k-space data along the channel direction of the network as shown in
Fig. 1.

Fig. 1. An overall scheme of k-space deep learning for parallel MRI. IFT represents
inverse Fourier transform.

Another major contribution of this paper is that our network learns the
k-space interpolation relationship between the minimum number of k-space sam-
ples and completely sampled k-space data from GRAPPA reconstruction to
address the lack of ground-truth data. As will be shown in later, this approach
allows the trained network to provide accurate reconstruction results at various
number of view sharing, since the network is trained to learn the Fourier domain
features rather than image domain ones.
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2 Theory

2.1 Problem Formulation

In TWIST, the center of k-space data (A region in Fig. 2) is more frequently
sampled than the periphery of k-space data (B region in Fig. 2). Since it reduces
the total number of samples for each frame, the reduced acquisition time is
required. However, high frequency k-space data from several frames should be
shared to make one time frame due to the strongly subsampled high frequency
k-space data. Therefore, the actual temporal resolution of TWIST imaging is
determined by the number of view-sharing.

Fig. 2. The center and periphery of k-space are denoted by A and B, respectively. (a)
Standard view sharing scheme for 2D GRAPPA reconstruction, and (b) an example of
reduced view sharing scheme.

There are different types of view sharing. For example, as shown in Fig. 2(a),
one type of view sharing is specifically designed for 2-D GRAPPA reconstruction,
where high frequency regions of five time frames (Bi−2, · · · , Bi+2) are combined
to provide a 2-D uniform sub-sampled k-space data with downsampling factor
of three and two along kx and ky directions, respectively.

Unlike the standard TWIST view sharing scheme, we are interested in using
various number of reduced view sharing. For example, the number of view sharing
can be reduced to two frames as shown in Fig. 2(b). GRAPPA cannot be applied
to this irregular sampling pattern, so we proposed a multi-coil deep learning
approach to reconstruct the k-space data.

2.2 From ALOHA to Deep Neural Network

ALOHA [9,19] was developed based on the duality between the sparsity in image
domain and the low-rankness of associated Hankel matrix in the k-space domain.
In addition, for parallel MRI, there exists the k-space inter-coil annihilating filter
relationship [9]:

ĝi � ŝj − ĝj � ŝi = 0, ∀i �= j, (1)

where ĝi and ŝi denote k-space data of the i-th coil and the specturm of the i-th
coil sensitivity map, respectively. This relationship in (1) leads to the low-rank
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property of the following extended Hankel structured matrix [9]:

Hd|P ( ̂G) =
[

Hd(ĝ1) · · · Hd(ĝP )
]

(2)

where
̂G =

[

ĝ1 · · · ĝP

] ∈ C
N×P

with the k-space measurement ĝi =
[

ĝi(k1) · · · ĝi(kN )
]T , and Hd(ĝi) is a Hankel

matrix constructed from ĝi with d denoting the matrix pencil size. P denotes the
number of coils. Therefore, the missing elements of k-space data can be recovered
using low rank Hankel matrix completion approaches [2,5]:

(MC) min
̂Z∈CN×P

rank Hd|P (̂Z) (3)

subject to PΛ[ĝi] = PΛ[ẑi], i = 1, · · · , P,

where PΛ is the downsampling operator PΛ : CN → C
N defined as

[PΛ[x̂]]j =

{

[x̂]j j ∈ Λ

0, otherwise
. (4)

However, this approach needs a relatively expensive computational cost for
matrix factorization.

Recently, our group proposed k-space deep learning approaches for acceler-
ated MRI [7] based on the observation that the Hankel matrix in the weighted
k-space domain is low-ranked so that deep neural network can be efficiently
implemented. By extending this idea, we apply the deep learning for the multi-
channel k-space data by stacking the multi-coil k-space data along the channel
direction of the network input.

3 Method

Four sets of in vivo 3D DCE data for carotid vessel imaging were acquired with
a TWIST sequence using Siemens 3T Verio scanners. The scanning parame-
ters for two sets were as following: repetition time (TR) = 2.5 ms, echo time
(TE) = 0.94 ms, 159 × 640 × 80 matrix, 2.5 mm slice thickness, 16 coils, and 37
temporal frames. For other two sets, the acquisition parameters were same as
above, expect for 1.2 mm slice thickness and 30 temporal frames. The sampling
pattern of data sets is illustrated in Fig. 2(a). Only 63% of data was acquired
due to the partial Fourier. The downsampling factor was three and two along kx

and ky direction, respectively. Among four patient data sets, three patient data
sets were used for training and validation. We used the remaining one patient
data set for test. The input k-space data for network is the kx-ky slice along z
direction and temporal frames.

We employed the tight-frame U-net [18] thanks to its capability of preserv-
ing of the details of image. To deal with complex-valued multi-channel k-space



Improved Time-Resolved MRA Using k-Space Deep Learning 51

Fig. 3. Network architecture of tight-frame U-net.

data, we divide the complex-valued k-space data into real and imaginary chan-
nels similar to [7]. The interpolated k-space data can be formed from the real
and imaginary channels as shown in Fig. 3. We implemented the network using
TensorFlow library [1].

4 Result

Figure 4 showed the subtracted maximum intensity projection (MIP) images for
test data. The temporal frames were selected to illustrate the propagation of
the contrast agent. In the proposed method, we generated the reconstructed
images using same neural network at various number of view sharing (VS). The
raw data in Fig. 4 is obtained by directly apply inverse Fast Fourier Transform
(FFT) to the k-space data without view sharing, which provide the true temporal
resolution.

In the GRAPPA reconstruction, the contrast agent was suddenly propagated
from the T = 10 frame to T = 11 frame as shown in Fig. 4. Since the degradation
of temporal resolution can be caused by the combination of multiple temporal
frames, the flow of contrast agent can be quickly changed only between one
frame. In the reconstructed images with VS = 2 using the proposed method, the
dynamics of the contrast agent is correctly demonstrated. As shown in Fig. 4,
the degree of temporal blurring in T = 11 frame can be captured depending on
the number of view sharing. The results of proposed method with VS = 5, which
is same to the conventional method, provided very similar spatial and temporal
resolution to the GRAPPA reconstruction.

Furthermore, the computational cost of the proposed method is more efficient
than that of GRAPPA and ALOHA. The proposed method can produce the
result only in 0.029 s, which is several order of magnitude faster than GRAPPA
and ALOHA.
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Fig. 4. Subtracted MIP results of GRPPA, raw data and the proposed methods for
various number of view sharing. VS stands for the number of view sharing.

5 Conclusion

In this paper, to enhance the temporal resolution of TWIST imaging and to
develop an algorithm that generates reconstruction results at various sliding
window size, we proposed a novel k-space deep learning algorithm for parallel
MRI. Our k-space deep network can exploit the redundancies along the coil
and image domain. The experimental results showed that one trained network
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can provide multiple reconstruction results with various spatial and temporal
resolution by changing the number of view sharing for the network input. We
believe that the proposed method suggests a significant new research direction
that can extend the clinical applications.
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