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Abstract. Frame rate is a crucial consideration in cardiac ultrasound
imaging and 3D sonography. Several methods have been proposed in the
medical ultrasound literature aiming at accelerating the image acquisi-
tion. In this paper, we consider one such method called multi-line trans-
mission (MLT), in which several evenly separated focused beams are
transmitted simultaneously. While MLT reduces the acquisition time, it
comes at the expense of a heavy loss of contrast due to the interactions
between the beams (cross-talk artifact). In this paper, we introduce a
data-driven method to reduce the artifacts arising in MLT. To this end,
we propose to train an end-to-end convolutional neural network consist-
ing of correction layers followed by a constant apodization layer. The
network is trained on pairs of raw data obtained through MLT and the
corresponding single-line transmission (SLT) data. Experimental eval-
uation demonstrates significant improvement both in the visual image
quality and in objective measures such as contrast ratio and contrast-
to-noise ratio, while preserving resolution unlike traditional apodization-
based methods. We show that the proposed method is able to generalize
well across different patients and anatomies on real and phantom data.
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1 Introduction

Medical ultrasound is a wide-spread imaging modality due to its high temporal
resolution, lack of harmful radiation and cost-effectiveness, which distinguishes
it from other modalities such as MRI and CT. High frame rate ultrasound is
highly desirable for the functional analysis of rapidly moving organs, such as the
heart. For a given angular sector size and acquisition depth, the frame rate is
limited by the speed of sound in soft tissues (about 1540 m/s). The frame rate
depends on the number of transmitted beams needed to cover the field of view;
thus, it can be increased by lowering the number of the transmitted events. One
such method termed multi-line acquisition (MLA) or parallel receive beamform-
ing (PRB) employs a smaller number of wide beams in the transmission, and
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constructs a multiple numbers of beams in the reception [14,17]. The drawbacks
of the method include block-like artifacts in images, reduced lateral resolution,
and reduced contrast [13]. Another high frame-rate method, multi-line trans-
mission (MLT), employs a simultaneous transmissions of a multiple number
of narrow beams focused in different directions [3,6]. Recently reinvented, this
method suffers from a high energy content due to the simultaneous transmissions
[15], and from cross-talk artifacts on both the transmit and receive, caused by
the interaction between the beams [18,19].

Fig. 1. Single- (left) vs. Multi- (right, with MLT factor of 6) line transmission proce-
dures and their corresponding ultrasound scans. Severe drop in contrast can be observed
in the case of MLT. Blue and red lines correspond two consecutive transmissions. (Color
figure online)

Over the years, numerous methods were proposed to deal with those arti-
facts, including constant [18,19] and adaptive [12,22] apodizations, by allocat-
ing different frequency bands to different transmissions [1,2], and by using a
tissue harmonic mode [11]. The filtered delay-multiply-and-sum beamforming
(F-DMAS) [10] was proposed in the context of MLT in [9], demonstrating better
artifact rejection, higher contrast ratio (CR) and lateral resolution compared to
MLT beamformed with delay-and-sum (DAS) and Tukey apodization on receive,
at expense of lower contrast-to-noise ratio (CNR). Finally, short-lag F-DMAS
for MLT was studied in [8], demonstrating a contrast improvement for higher
maximum-lag values, and resolution and speckle-signal-to-noise ratio (sSNR)
improvements for lower lag values, at the expense of decreased MLT cross-talk
artifact rejection. By using a simulated 2–MLT, it was demonstrated in [11]
that the tissue harmonic imaging mode provides images with a lower transmit
cross-talk artifact as compared to the fundamental harmonic imaging. However,
the receive cross-talk artifact still requires correction. In the present study, we
demonstrate that similarly to the fundamental harmonic, the cross-talk is more
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severe in the tissue harmonic mode for higher MLT configurations, which is
manifested by a lower contrast.

Convolutional neural networks (CNN) were introduced for the processing of
ultrasound acquired data in order to generate a high quality plane wave com-
pounding with a reduced number of transmissions [4] as well as for fast despeck-
ling, and CT-quality image generation [20] during the post-processing stage. In
a parallel effort, [16] demonstrated the effectiveness of CNNs in improving MLA
quality in ultrasound imaging. To the best of our knowledge, ours is the first
attempt to use CNN in MLT ultrasound imaging.

Contributions. In this work, we propose an end-to-end CNN-based approach for
MLT artifact correction. We train a convolutional neural network consisting of
an encoder-decoder architecture followed by a constant apodization layer. The
network is trained with dynamically focused element-wise data obtained from
in-vivo scans in an simulated MLT configuration with the objective to approx-
imate the corresponding single-line transmission (SLT) mode. We demonstrate
the performance of our method both qualitatively and quantitatively using met-
rics such as CR and CNR. Finally, we validate that the trained model generalizes
well to different patients, different anatomies, as well as to phantom data.

2 Methods

MLT Simulation. Acquisition of the real MLT data is a complicated task that
requires a highly flexible ultrasound system. Fortunately, MLT can be faithfully
simulated using the data acquired in a single-line transmit (SLT) mode by sum-
mation of the received data prior to the beamforming stage, as was done in
[11,12] for the fundamental and tissue harmonic modes. It should be noted that
while MLT can be simulated almost perfectly in a fundamental harmonic case,
there is a restriction in the tissue harmonic mode due to the nonlinearity of its
forward model. It was shown in [11] that in the tissue harmonic mode, the sum-
mation of the data sequentially transmitted in two directions provides a good
enough approximation for the simultaneous transmission in the same directions
if the MLT separation angle is above 15◦. The assumption behind the present
study is that this approximation holds for a higher MLT number, as long as the
separation angle remains the same, since the beam profile between two beams
is mainly affected by those beams. For this reason, 4–MLT and 6–MLT with
separation angles of 22.6◦ and 15.06◦, respectively, were used in this study.

Clinical use mandates the use of lower excitation voltage in real MLT, imple-
mented in a standard way [15], due to patient safety considerations, which will
affect the generation of the tissue harmonic and signal-to-noise ratio (SNR).
The latter issue can probably be adressed by the CNNs, that are capable of
learning denoising tasks, as has been demonstrated in [21]. It should be noted,
that alternative implementations of MLT were proposed in [15], allowing a safer
application of the method. However, to the best of our knowledge, no study was
performed concerning impact of those methods on image quality. Nevertheless,
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this study focuses on testing whether the MLT artifact can be corrected using
CNN, while the optimization of the number of simultaneous transmissions in the
tissue harmonic mode is beyond its scope.

Data Acquisition. For the purpose of the study, we chose imaging of quasi-
static internal organs, such as bladder, prostate, and various abdominal struc-
tures, since the simulated MLT of the rapidly moving organ may alter the cross-
talk artifact. The study was performed with the data acquired using a GE ultra-
sound system, scanning 6 healthy human volunteers and a tissue mimicking
phantom (GAMMEX Ultrasound 403GS LE Grey Scale Precision Phantom).
The tissue harmonic mode was chosen for this study, being a common mode for
cardiac imaging, with a contrast resolution that is superior to the fundamental
harmonic, at either f0 or 2f0. The scans were performed in a transversal plane by
moving a probe in a slow longitudinal motion in order to reduce the correlation
in the training data acquired from the same patient. The acquisition frame rate
was 18 frames per second. Excitation sinusoidal pulses of 2.56 cycles, centered
around f0 = 1.6 MHz, were transmitted using a 64-element phased array probe
with the pitch of 0.3 mm. No apodization was used on transmit. On receive, the
tissue harmonic signal was demodulated (I/Q) at 3.44 MHz and filtered. A 90.3◦

field-of-view (FOV) was covered with 180 beams. In the case of MLT, the signals
were summed element-wise with the appropriate separation angles. Afterward,
both SLT and MLT were dynamically focused and summed. In the simulated
MLT mode the data were summed after applying a constant apodization win-
dow (Tukey, α = 0.5) as the best apodization window in [18,19]. At training,
non-apodized MLT and SLT data were presented to the network as the input
and the desired output, respectively.

Improving MLT Quality Using CNNs. As mentioned earlier, traditional
methods tackle the cross-talk artifacts by performing a linear or non-linear pro-
cessing of a time-delayed element-wise data to reconstruct each pixel in the
image. In this work, we propose to replace the traditional pipeline of MLT arti-
fact correction with an end-to-end CNN, as depicted in Fig. 2.

Network Architecture. The proposed network resembles a fully-convolutional
autoencoder (albeit different training regime), consisting of 10 layers with sym-
metric skip connections from each layer in the upsampling track to each layer
within the downsampling track [7]. All the convolutions set to 3 × 3, stride 1
and the non-linearities are set to ReLU. Downsampling is performed through
average pooling and strided convolutions are used for upsampling. The network
accepts time-delayed phase-rotated element-wise I/Q data from the transducer
obtained through MLT as the input.

Apodization Stage. A constant apodization layer is introduced following the
downsampling and upsampling tracks. It is implemented as 1 × 1 convolutions
consisting of 64 channels which are applied element-wise and initialized with
a boxcar function (window of ones). The layer can be implement any constant
apodization such as Tukey or Hann windows.
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Training. Following the apodization at the last output stage, the network outputs
an artifact-corrected I/Q image. At training, SLT I/Q image are used both to
generate a simulated MLT input data as well as the corresponding SLT (artifact-
free) reference output. The network is trained as a regressor minimizing the
L1 discrepancy between the predicted network outputs and the corresponding
ground-truth SLT data. The loss is minimized using Adam optimizer [5], with
the learning rate set to 10−4. The training data were acquired as described in
previous sections. A total of 750 frames from the acquired sequences were used
for training. The input to the network is a MLT I/Q image of size 696×180×64
(depth × lines × elements) and the output is an SLT-like I/Q image data of size
696× 180 (depth × lines). The training is performed separately for the I and Q
components of the image.

Fig. 2. CNN-based MLT artifact correction pipeline. For all the experiments within
this paper: M = 696, N = 180, b = 5

3 Experimental Evaluation

Settings. In order to evaluate the performance of the networks trained on 4– and
6–MLT setups, we consider a test set consisting of two frames from the bladder
and one frame from a different anatomy acquired from a patient excluded from
the training set, and a phantom frame. While all the chosen test frames were
unseen during training, the latter two frames portray different image classes that
were not part of the training set. The data were acquired as described in Sect. 2.
Evaluation was conducted both visually and quantitatively using CR and CNR
objective measures as defined in [8].
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Results and Discussion. Figure 3 (in the paper) and S1-2 (in the supple-
mentary material)1 depict the SLT groundtruth, and the artifact-corrected 4–
and 6–MLT images. Figure 3 demonstrates a number of anatomical structures
in abdominal area, as depicted by the arrows. The CNN processing has restored
the CR loss caused by the MLT cross-talk artifact for the 4–MLT, and improved
the CR by a 9.8 dB for the 6–MLT, as measured for aorta (yellow contour) and
a background region (magenta contour). S1 demonstrates structures in a tissue
mimicking phantom, such as anechoic cyst (the black circle marked by a yellow
rectangle) and number of a point reflectors. Finally, S2 demonstrates a bladder
(large dark cavity) and a prostate, located beneath it, scanned in a transversal
plane. The output of our CNN was compared to the MLT image with Tukey
(α = 0.5) window apodization on receive, a common method to the attenuation
of the receive cross-talk artifact.

Fig. 3. CNN-based MLT artifact correction tested on in-vivo abdominal
frames (a) an in-vivo frame acquired through SLT from the excluded patient, (b),
(d) corresponding 4– and 6–MLT with (Tukey, α = 0.5) window, and (c), (e) corre-
sponding CNN-corrected frames

Qualitative evaluation for the phantom frame is presented in S1 along with
quantitative measurements, provided in the supplementary materials. A magni-
fied region depicts the response from one of the wires of the phantom. A thinner
appearance, as compared to the apodized MLT image, can be observed for both
1 The supplementary materual can be found here https://drive.google.com/open?

id=1fNq NHG ye1Ph6Yvuxvr-y8a L3cXofE.

https://drive.google.com/open?id=1fNq_NHG_ye1Ph6Yvuxvr-y8a_L3cXofE
https://drive.google.com/open?id=1fNq_NHG_ye1Ph6Yvuxvr-y8a_L3cXofE
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4– and 6–MLT frames processed with the proposed CNN, since no apodization
was needed to attenuate the artifacts. Quantitatively, the CR of the anechoic
cyst as compared to the nearby tissue, was restored for the case of 6–MLT,
whereas for the 4–MLT case it was improved by almost 7 dB as compared to the
SLT. Since the network was trained on the data with a higher number of a strong
reflectors, thus higher artifact content, it is possible that the artifact content is
overestimated in some cases. The images of the bladder (S2) appear to have a
higher quality in the 4–MLT and 6–MLT CNN corrected cases, as compared to
the respective apodized versions. Quantitatively, the improvement in contrast
over apodized MLT was around 10 dB for 4-MLT and 13 dB for 6–MLT.

A slight CNR improvement as compared to the apodized MLT was measured
in all cases, except for the 6–MLT for the tissue mimicking phantom, where the
CNR remained the same. The performance of our CNN, verified on the testing
set frames of internal organs, and of a tissue mimicking phantom, suggests that
it generalizes well to other scenes and patients, despite being trained on a small
dataset of bladder frames.

It should be noted that the coherent processing of the data (through con-
volutions applied on the data prior to the envelope detection) along the lateral
direction may impose motion artifacts while imaging regions involving rapid
movement (such as cardiac tissue and blood). Nevertheless, in most compen-
sation methods, the correction is performed without relying on the adjacent
samples in lateral direction, thus, similar approaches relying on constraints in
the lateral direction can be built into the neural network. We defer this case to
a future studies.

4 Conclusion

In this paper, we have demonstrated that correction provided by an end-to-end
CNN outperforms the constant apodization-based correction method of MLT
cross-talk artifacts, as measured using CR and CNR. Moreover, the obtained
CNN generalizes well for different anatomical scenes. In the future, we intend
to address the problem of MLT artifact suppression for rapidly moving objects
scenes, by training a CNN to correct all the lines beamformed from a single
transmit event. Furthermore, we aim at exploring the possibility of similarly
reconstructing artifact-free images for combined MLT-MLA configurations, that
introduce an even larger boost in frame rate.
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