Skip to main content

Abstract

Gravity waves are fundamentally important to the mesoscale dynamics of the Earth’s atmosphere. Linearized gravity-wave theory provides an important conceptual framework for mesoanalysts and forecasters in interpreting observations and the results of numerical weather simulations and predictions. Gravity waves transport significant amounts of energy and momentum. They trigger convective storms and spawn clear-air turbulence. They interact strongly with one another, and, in the process, drive major spectral energy transfers in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bretherton, F. P., 1969: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213–243.

    Article  Google Scholar 

  • Chimonas, G., and J. R. Grant, 1984a: Shear excitation of gravity waves. 1. Modes of a two scale atmosphere. J. Atmos. Sci., 41, 2269–2277.

    Article  Google Scholar 

  • Chimonas, G., and J. R. Grant, 1984b: Shear excitation of gravity waves. 2. Upscale scattering from the Kelvin-Helmholtz waves. J. Atmos. Sci., 41, 2278–2288.

    Article  Google Scholar 

  • Christie, D. R., K. J. Muirhead, and A. L. Hales, 1977: On solitary waves in the atmosphere. J. Atmos. Sci., 35, 805–825.

    Article  Google Scholar 

  • Dunkerton, T., 1980: A Lagrangian mean theory of wave, mean-flow interaction with applications to nonacceleration and its breakdown. Rev. Geophys. Space Rea., 18, 387–400.

    Article  Google Scholar 

  • Einaudi, F., and D. P. Lalas, 1974: Some new properties of Kelvin-Helmholtz waves in an atmosphere with and without condensation effects. J. Atmos. Sci., 31, 1995–2007.

    Article  Google Scholar 

  • Erickson, C. O., and L. F. Whitney, Jr., 1973: Gravity waves following severe thunderstorms. Mon. Wea. Rev., 101, 708–711.

    Article  Google Scholar 

  • Erickson, C. O., and L. F. Whitney, Jr., 1978: Comments on “Wave generation and frontal collapse.” J. Atmos. Sci., 35, 2379.

    Article  Google Scholar 

  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Elsevier, Amsterdam, New York, 456 pp.

    Google Scholar 

  • Hines, C. 0., 1971: Generalizations of the Richardson criterion for the onset of atmospheric turbulence. Quart. J. Roy. Meteor. Soc., 97, 429–439.

    Google Scholar 

  • Howard, L. N., 1961: Note on a paper of John Miles. J. Fluid Mech., 10, 509–512.

    Article  Google Scholar 

  • Keller, J. L., 1984: Performance of a quantitative jet stream turbulence forecasting technique: the specific CAT risk (SCATR) index. Proc., AIAA 22nd Aerospace Sciences Meeting, AIAA Paper 84–0271, 7 pp.

    Google Scholar 

  • Lalas, D. P., and F. Einaudi, 1973: On the stability of a moist atmosphere in the presence of a background wind. J. Atmos. Sci., 30, 795–800.

    Article  Google Scholar 

  • Ley, B. E., and W. R. Peltier, 1978a: Wave generation and frontal collapse. J. Atmos. Sci., 35, 3–17.

    Article  Google Scholar 

  • Ley, B. E., and W. R. Peltier, 1978b: Reply. J. Atmos. Sci., 35, 2380.

    Article  Google Scholar 

  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508.

    Article  Google Scholar 

  • Purdom, J. F. W., and K. Marcus, 1982: Thunderstorm trigger mechanisms over the southeast United States. Preprints, 12th Conference on Severe Local Storms, San Antonio, Tex., American Meteorological Society, Boston, 487–488.

    Google Scholar 

  • Roach, W. T., 1970: On the influence of synoptic development on the production of high level turbulence. Quart. J. Roy. Meteor. Soc., 96, 413–429.

    Article  Google Scholar 

  • Stobie, J. G., F. Einaudi, and L. W. Uccellini, 1983: A case study of gravity waves–convective storms interaction: 9 May 1979. J. Atmos. Sci., 40, 2804–2830.

    Article  Google Scholar 

  • Tepper, M., 1954: Pressure jump lines in Midwestern United States, January-August 1951. Res. Paper 37, United States Weather Bureau, Washington, D.C., 70 pp.

    Google Scholar 

  • Uccellini, L. W., 1973: A case study of apparent gravity-wave initiation of severe convective storms. Rep. 73–2, Department of Meteorology, University of Wisconsin.

    Google Scholar 

  • Whitham, G. B., 1974: Linear and Nonlinear Waves, Wiley, New York, 636 pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Hooke, W.H. (1986). Gravity Waves. In: Ray, P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-20-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-20-1_12

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-20-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics