
6

Design of Real-time Systems for QoS

It was discovered early, that in order to achieve the desired QoS properties a design

methodology for real-time systems has to include appropriate measures to ensure that

the QoS criteria are considered during the entire life-cycle. These have been joined

in the framework of the ISO/IEC 13236 [31] and ISO/IEC TR 13243 [32] standards

for QoS in information technology, and the standard IEC 61508 [28], which includes

the necessary activities for safety-related systems from a project’s start until the end

of its life-cycle. Like safety, security is also an issue that is gaining importance for

embedded (real-time) applications [76], and which must be dealt with during the

design phase, too.

In the following sections the mentioned QoS criteria are addressed from dif-

ferent phases and aspects of real-time system design, where they should be con-

sidered in order for a system to fulfil these requirements. Apart from the general

ISO/IEC 13236 and ISO/IEC TR 13243 standards, which mainly deal with system

functionality and development process, more specific QoS standards for real-time

systems are addressed here. Timeliness, being the most important QoS property of

real-time systems, is considered in detail in the next chapter. It is, however, affected

by the issues addressed here and cannot, therefore, be maintained in the long run

unless they are also satisfied.

6.1 Design for Predictability and Dependability

6.1.1 Design for Predictability

For real-time systems the foremost property is predictability. It also pertains to be-

havioural predictability, which is addressed in the following sections. However, in

the real-time domain usually a system’s timeliness is meant, which represents the

property of the system whether all its actions can be performed in time during its

entire up-time. Such a system is considered to behave in a (temporally) predictable

way, and is said to “operate in real time”.

46 6 Design of Real-time Systems for QoS

During design, predictability is supported by carefully planning the order of ac-

tivities as well as taking care of their durations. Often the activities are executed

periodically and, hence, a main loop, named cyclic executive, is built around them. It

invokes them in a certain order when a timer, to which their period is assigned, times

out. Naturally, the sum of their durations shall not exceed this period for them to

finish in time. These activities, usually called tasks, do not necessarily have a unique

and fixed period. Hence, dynamic scheduling algorithms have been devised (e.g. the

Rate Monotonic one (RM)), which dynamically assign priorities to tasks based on

their relative urgencies (reciprocal values of their periods). Also, some or all of the

tasks may not be periodic, but still have temporal constraints on their execution.

For these cases other non-priority- (time) oriented scheduling algorithms have been

devised (e.g. Earliest Deadline First (EDF), or Least Laxity First (LLF)). They are

considered in a special kind of performance analysis, named schedulability analysis,

which determines the temporal predictability of diverse execution scenarios to dis-

cover bottlenecks and, foremost, to foresee the temporal predictability of a system’s

activities.

There are two kinds of design approaches that enable reasoning on the timeliness

of task executions — formal and non-formal. The formal design methods encom-

pass temporal state automata (e.g. Communicating Shared Resources (CSR) [69],

timed Petri nets [79] or UML state charts). The non-formal design methods encom-

pass Gantt diagrams and derivatives thereof (e.g. UML sequence diagrams and UML

timing diagrams). While formal design methods can deliver estimates of an activi-

ties’ execution time, it is still up to the scheduling algorithm to ensure their timely

execution in correspondence with their periods/deadlines.

6.1.2 Design for Availability

Permanent readiness in high-availability systems requires that the systems be de-

signed for non-stop operation. Of course, such systems also require maintenance and

occasional software upgrades. For this purpose, re-configuration management mech-

anisms have been developed. Initially, static re-configuration has been used, repre-

senting strictly defined operation scenarios (e.g. manufacturing lines, space shuttle or

avionics). With the advent of reactive systems the need for dynamic re-configuration

arose, where the lines among phases are not so strict, and where there may be sce-

nario parts that are interchanged leaving the rest intact and functioning.

Re-configuration management should support implementation platforms with the

following attributes:

Heterogeneity: optimising architectures for performance, size and power consump-

tion requires the most appropriate implementation techniques to be used; imple-

mentations require software-configurable hardware

(Hard) real time: usually there are significant real-time constraints on embedded

systems

Re-configurability: an execution environment must allow hardware and software re-

sources to be re-allocated dynamically

6.1 Design for Predictability and Dependability 47

Execution environments supporting dynamic re-configuration encompass the follow-

ing features:

∙ Specification of hardware and software configurations with well defined re-

configuration scenarios — conditions and methods for re-allocation of hard-

ware/software components and their interconnections

∙ Monitoring of local state changes and delegation of state changes to affected

processing nodes during re-configuration

∙ Minimum and predictable overhead to overall execution time through short and

well defined re-configuration actions

During dynamic re-configuration, application data must remain consistent and real-

time constraints must be satisfied. To fulfil the mentioned requirements, these issues

must be addressed at multiple levels:

Hardware level: At the lowest level, the hardware must be re-configurable. Soft-

ware-programmable hardware components have best inherent hardware support,

since their functions can be changed by memory contents. Also, internal hard-

ware structures can be designed in a way restricting dangerous conditions that

may damage hardware.

Middleware level: At a slightly higher level, the internal state of the system must

be managed under changing tasking. Operating systems have evolved to support

flexible implementations of multiple tasks on a single processor in the form of

time-sharing and/or multitasking. Typically, however, this alone is not enough

for low-level efficiency and/or hard real-time conditions.

Software level: To represent the behaviour of an embedded real-time system, gener-

ally three viewpoints must be considered: (1) the external functional viewpoint,

representing the operation scenarios, (2) the internal functional viewpoint, which

models the dynamical state changes of the system, and (3) the specification of

the hardware and software architectures together with the mapping of software

onto hardware components. These are the data required by the re-configuration

management execution environment.

Re-configuration management for embedded (real-time) systems has mostly been

dealt with in connection with their hardware/software co-design [47, 63, 78]. Besides

defining diverse (dynamic) operation scenarios, two main goals have been achieved

by this approach: (1) achieving fault tolerance by system design [25, 40], and (2) fast

scenario switching for industrial automation and telecommunication systems [19, 27,

39, 63].

6.1.3 Design for Safety

In the late 1980s, the International Electrotechnical Commission (IEC) started the

standardisation of safety issues in computer control. Four Safety Integrity Levels

(SIL) were defined, with SIL4 being the most critical one. Activities were prescribed

at different levels and phases of system development (e.g. coding standards, dynamic

48 6 Design of Real-time Systems for QoS

analysis and testing, black-box testing, failure analysis, modelling, performance test-

ing, formal methods, static analysis, modular approach), which are desired or manda-

tory, and approaches that are allowed or required in order to fulfil the requirements of

a certain Safety Integrity Level. These rules form the standard IEC 61508 for the life-

cycle management of instrumented protection systems. As can be seen from Fig. 6.1,

the safety life-cycle encompasses the entire production cycle from a system’s design

to its decommissioning.

SIL Flowchart

The flowchart in Fig. 6.1 represents the safety life-cycle of an Equipment Under

Control (EUC) as a whole in its entirety. Such EUC is composed of one or more

Electrical/Electronic/Programmable Electronic (E/E/PE) devices, which as a system

have to fulfil individual as well as collective safety requirements. The single steps of

the safety life-cycle for an EUC have the following meanings:

1. Concept: all information on the EUC (physical, legislative, etc.), relevant to the

following steps need to be assembled

2. Overall scope definition: specification of the hazards and risks (e.g. process haz-

ards, environmental hazards)

3. Hazard and risk analysis: is performed to determine the hazards and hazardous

events or sequences of events of the EUC (and the EUC control system) for all

foreseeable cases including fault conditions and misuse and to determine the

associated risks

4. Overall safety requirements: a specification of the overall safety requirements is

developed in terms of the safety function requirements and the safety integrity

requirements in order to achieve the functional safety required

5. Safety requirements allocation: places the safety functions from the specification

produced previously on the designated E/E/PE or on other-technology safety-

related systems as well as external risk reduction facilities, and allocates a safety

integrity level to each safety function

6. Overall operation and maintenance planning: is carried out for the E/E/PE

safety-related systems to ensure that the required functional safety is maintained

during operation and maintenance

7. Overall safety validation planning: facilitates the overall safety validation of the

E/E/PE safety-related systems

8. Overall installation and commissioning planning: is carried out to ensure that

during these phases the required functional safety of the E/E/PE safety-related

systems is achieved

9. Safety-related systems (E/E/PES) realisation: comprises the creation phase of

the E/E/PE safety-related systems where the specified functional safety and

safety integrity requirements have to be obeyed

10. Safety-related systems (other technology) realisation: comprises the creation

phase of other safety-related systems where the specified functional safety and

safety integrity requirements for these specific technologies have to be obeyed

(outside the scope of this standard)

6.1 Design for Predictability and Dependability 49

1. Concept

2. Overall scope
definition

3. Hazard and risk
analysis

4. Overall safety
requirements

5. Safety
requirements

allocation

6. Overall
operation and
maintenance

planning

7. Overall safety
validation planning

8. Overall
installation and
commisioning

planning

9. Safety-related
systems: E/E/PES

realisation

10. Safety-related
systems: other

technology
realisation

11. External risk
reduction facilities

realisation

12. Overall
installation and
commissioning

13. Overall safety
validation

14. Overall
operation,

maintenance and
repair

16.
Decommissioning

and disposal

15. Overall
modification and

retrofit

Back to
appropriate

overall safety
life-cycle phase

PLANNING REALISATION

Fig. 6.1. Safety life-cycle according to IEC 61508

50 6 Design of Real-time Systems for QoS

11. External risk reduction facilities realisation: comprises the creation of external

risk reduction facilities to meet the specified safety functions and the safety in-

tegrity requirements thereof (outside the scope of this standard)

12. Overall installation and commissioning: comprises the installation/commissio-

ning phase of the E/E/PE safety-related systems

13. Overall safety validation: is to validate that the specified functional safety and

safety integrity requirements for the E/E/PE safety-related systems are met

14. Overall operation, maintenance and repair: comprises the with respect to safety

functionally intact operation, maintenance and repair of the E/E/PE safety-

related systems

15. Overall modification and retrofit: is meant to ensure that the functional safety for

the E/E/PE safety-related systems is appropriate during and after these phases

16. Decommissioning or disposal: is meant to ensure that the functional safety of

the E/E/PE safety-related systems is appropriate during and after these phases

on the EUC and its control system

Safety Integrity Levels

The standard IEC 61508 details the requirements necessary for a system to qualify

for each of the four Safety Integrity Levels. These requirements are more rigorous at

higher levels of safety integrity in order to achieve the required lower likelihood of

dangerous failures.

An E/E/PE safety-related system usually implements more than one safety func-

tion. If the safety integrity requirements for these safety functions differ, unless there

is sufficient independence between their respective implementations, the require-

ments applicable to the highest relevant Safety Integrity Level shall apply to the

entire E/E/PE safety-related system. If a single E/E/PE system is capable of provid-

ing all required safety functions, and the required safety integrity is less than that

specified for SIL1, then IEC 61508 does not apply.

For safety-related systems two kinds of requirements are defined:

1. Safety function requirements: the safety functions that have to be performed

2. Safety integrity requirements: the reliability with which the safety functions have

to be performed

By functional safety the ability of a safety-related system to carry out the actions

necessary to achieve a safe state for the equipment under control or to maintain a safe

state for the equipment under control is meant and relates to safety. Safety integrity
is the likelihood of a safety-related system to achieve safety functions required under

all conditions stated within a given period of time; it relates to reliability.

The Safety Integrity Levels are defined in Table 6.1 by the probabilities of “fail-

ure on demand (FOD)”, “protective system technology”, and “protective system de-

sign/testing/maintenance (D/T/M) requirements”. We can observe how the increas-

ing complexity of designs and components used also increases the cost and main-

tenance interval rate of systems. With falling maximum failure probability also the

need to allow for common-cause failures is raised, which adds to complexity and

6.1 Design for Predictability and Dependability 51

cost. On the other hand, simplicity in design and usage of standard components with

lower sensing and actuation (S&A) diversity prolong the required maintenance in-

tervals and lower the need to allow for common-cause failures. Failure probability is

the direct opposite of dependability.

Table 6.1. Safety Integrity Levels

FOD probability
SIL1 0.1–0.01

SIL2 0.01–0.001

SIL3 0.001–0.0001

SIL4 0.0001–0.00001

System technology
SIL1 Standard components, single channel

SIL2 Predominantly standard components

SIL3 Multiple channel with S&A diversity

SIL4 Specialised designs

D/T/M requirements
SIL1 Relatively inexpensive

SIL2 Moderately expensive

SIL3 Expensive

SIL4 Very expensive

Test interval
SIL1 > 3 months

SIL2 < 3 months

SIL3 1 month

SIL4 < 1 month

Apart from the above-mentioned process techniques to achieve system safety,

some design techniques have also been devised. The mentioned design techniques,

representing vital parts of a system’s development phase, form parts 6 and 9 of the

safety life-cycle in Fig. 6.1. Some of them are summarised in Table 6.2 together with

their importance to the individual Safety Integrity Levels.

We can observe similarities in recommended design techniques among SIL1 and

SIL2, and among SIL3 and SIL4. The main differences are in the rigour of their

application. There is a noticeable rise in the required effort and rigour of the methods

to be applied between SIL2 and SIL3 (e.g. the use of formal methods).

In the following sections some of the mentioned design techniques are discussed

and some further ones, which have been devised especially for fault removal or fault

tolerance in dependable real-time systems, are presented.

52 6 Design of Real-time Systems for QoS

Table 6.2. Software practices from IEC 61508-3 by category

Practice 61508-3 SIL1 SIL2 SIL3 SIL4

Coding standards
Use of coding standard B.1 HR HR HR HR

No dynamically allocated variables B.1 — R HR HR

Dynamic analysis and testing
Test case execution from cause consequence diagrams B.2 — — R R

Structure-based testing B.2 R R HR HR

Black-box testing
Equivalence classes and input partition testing B.3 R HR HR HR

Failure analysis
Failure modes, effects and criticality analysis B.4 R R HR HR

Formal methods modelling B.5 — R R HR

Performance modelling B.5 R HR HR HR

Timed Petri nets B.5 — R HR HR

Performance testing
Avalanche/stress testing B.6 R R HR HR

Response timings and memory constraints B.6 HR HR HR HR

Performance requirements B.6 HR HR HR HR

Semi-formal methods
Sequence diagrams B.7 R R HR HR

Finite state machines/state transition diagrams B.7 R R HR HR

Decision/truth tables B.7 R R HR HR

Static analysis
Boundary value analysis B.8 R R HR HR

Control flow analysis B.8 R HR HR HR

Fagan inspections B.8 — R R HR

Symbolic execution B.8 R R HR HR

Walk-throughs/design reviews B.8 HR HR HR HR

Modular approach
Software module size limit B.9 HR HR HR HR

Information hiding/encapsulation B.9 R HR HR HR

Fully defined interface B.9 HR HR HR HR

Total recommended (R) 12 12 3 1

Total highly recommended (HR) 6 10 20 22

Legend: HR highly recommended; R recommended; — no recommendation

6.1 Design for Predictability and Dependability 53

6.1.4 Design for Reliability

Design for Testability

Maintainability and testability concern systems on which it is possible to act in order

(1) to avoid the introduction of faults and, (2) when faults occur, to detect, localise

and correct them. The means to tackle these issues can be divided into the following

categories [21]:

Fault prevention aims to reduce the creation and occurrence of faults during the life-

cycle of a system. It includes the measures to ensure that all applicable physical
constraints are met and that only static and real features are used. As a precau-

tion, to prevent faults in the design phase as well as to ensure maintainability, the

concern for bounded complexity of the design as a whole and of its parts has to

be taken into account as well. This eases portability and flexibility of a solution.

Fault removal aims to detect and eliminate existing faults. It is addressed by verifi-

cation and validation of a system against its specifications.

Fault tolerance aims to guarantee the services provided by a system despite the pres-

ence or occurrence of faults. This issue is meant to ensure permanent readiness,

simultaneous operation, predictability, robustness, graceful degradation and pre-

vention of deadlocks.

Fault forecasting aims to estimate the presence of faults (number and severity).

Apart from the suppression of faults in real-time systems, the equally important time-

liness issue has to be considered. In real-time systems, timing faults and functional

faults are treated equally. Since these faults cannot be removed, they can only be

addressed by fault forecasting and prevention, and handled by fault tolerance (e.g.

graceful degradation) mechanisms.

To analyse the timing behaviour in a system, hardware and software monitors can

be applied, and timing analysers used on the compiled code to estimate worst-case

response times, error detection and correction times and signal-to-noise ratio bounds

in signal processing applications. The quantities TBF, MTTF and MTTR are hard

to measure, and exhaustive systematic testing has to be applied on a final system,

possibly permanently damaging or destroying it.

Fault Prevention

Once the elicitation of a client’s needs has been completed, a system is to be defined

that fulfils these needs. This work leads to the expression of specifications. Since

they are the first source of faults, they have to be well pondered and precisely for-

mulated. To reduce the possibility of faults at this phase in the design process, the

specifications may be checked for conformity with the following criteria:

54 6 Design of Real-time Systems for QoS

1. Semantic criteria
Non-ambiguity: each element of the specification should have one interpretation

only

Completeness: all aspects of operation should be covered and boundary condi-

tions defined

Consistency: there should be no conflicts between the elements of the specifi-

cation.

Traceability: the customer needs and specification elements have to be clearly

correlated

2. Syntactic criteria
Concision: unnecessary and misleading terms should be avoided

Clarity: the sentences of the specification should be easy to read, i.e. short and

simply formed; the text flow should be straightforward, i.e. unnecessary ref-

erences and jumps should be avoided

Simplicity: the concepts addressed have to be simple, their number has to be

limited and they should be loosely coupled

Comprehension: reading of the text has to facilitate the understanding of the

semantics

Non-conformity to these criteria increases the risk of faults. These criteria also apply

to design models. Methods to verify specifications comprise reviewing, scenarios

and prototyping.

Review processes are carried out by humans analysing the contents of specifica-

tions. There are two general approaches to reviews: walk-through and inspection. A

reviewer may search for faults or risks of faults in a specification model. More reli-

able results are produced if a review is conducted by a person or team that was not

involved in the specification. Resulting notes on the (potential) faults are returned to

the specification’s producer.

From scenarios input/output sequences that simulate the interaction between the

system specified and its environment are derived. They are presented to the client,

who approves or disapproves them.

The result of prototyping is a tool, built from the specification document, which

simulates the system’s interactions with its environment. Its use by the client allows

the detection of errors or misconceptions in the specification. Herewith, also possible

sources of timing faults can be detected and dealt with appropriately.

The same guiding principles as for specifications remain pertinent also when

choosing an appropriate design model. Methods of adequate expressiveness have

to be selected in concordance with the characteristics of the system designed. The

more the concepts to be modelled concur with the model features, the simpler the

solution will be, and the lesser will be the probability of introducing faults. Versatile

design methods for the hardware and software constituents of systems have already

been partly unified (e.g. in the UML methodology dealt with in detail in the next

chapter). There are, however, still aspects of hardware (e.g. boards) and software

(e.g. temporal behaviour and analysis) design that are only partly addressed by the

more general design methods. Hence, the pertaining properties have to be specified

6.1 Design for Predictability and Dependability 55

as well as possible in the framework of a system and the detailed design has to be

checked separately to fulfil their specifications in the “bigger picture”.

The choice of an adequate design modelling tool is not sufficient to design a

faultless system. It is equally important to employ a proper design process. Indeed,

faults can also be due to the designers’ inability of deducing a correct model due to

the expressive means available or due to an inappropriate choice of design phases.

One of the prominent design processes for faultless systems is the standard SIL-based

process model presented in the next section.

Example: Coding Rules for Safety-critical Applications

Most serious software development projects use coding guidelines. In connection

with a consistent design method and process, they are very important to ensure co-

herent software artifacts in a larger and/or evolving project team. They define the

ground rules for the software to be written “by hand”: how it should be structured,

which language features should be used and how. According to [26] there is, sur-

prisingly, little consensus on what a good coding standard is. In this article, ten rules

were defined with special emphasis on safety-critical applications:

1. Restrict all code to very simple control flow constructs — do not use goto state-

ments, setjmp or longjmp constructs, or direct or indirect recursion.

2. Give all loops a fixed upper bound. It must be at least trivially possible to stat-

ically prove that a loop cannot exceed a pre-set upper bound for the number of

iterations.

3. Do not use dynamic memory allocation after initialisation.

4. No function should be longer than what can be printed on a single sheet of paper

in a standard format with one line per statement and one line per declaration

(typically this means a maximum of 60 lines of code per function).

5. The code’s assertion density should average to a minimum of two assertions per

function. Assertions must be used to check for anomalous conditions that should

never happen in real-life executions. They must be free of side effects and should

be defined as Boolean tests. When an assertion fails, an explicit recovery action

must be taken, such as returning an error condition to the caller of the function

that executes the failing assertion. Any assertion for which a static checking tool

can prove that it can never fail or never hold violates this rule.

6. Declare all data objects at the smallest possible level of scope.

7. Each calling function must check the return value of non-void functions, and

each called function must check the validity of all parameters provided by the

caller.

8. The use of a preprocessor must be limited to the inclusion of header files and

simple macro definitions. Token pasting, variable argument lists (ellipses) and

recursive macro calls are not allowed. All macros must expand into complete

syntactic units. The use of conditional compilation directives should be kept to

a minimum.

56 6 Design of Real-time Systems for QoS

9. The use of pointers must be restricted. Specifically, no more than one level of de-

referencing should be used. Pointer de-reference operations may not be hidden

in macro definitions or inside typedef declarations. Function pointers are not

permitted.

10. All code must be compiled from the first day of development, with all compiler

warnings enabled at the most pedantic setting available. All code must compile

without warnings. All code must also be checked daily with at least one, but

preferably more than one, strong static source code analyser and should pass all

analyses with zero warnings.

Of course the choice of a programming language is a key consideration in this con-

cern. Since for programming aerospace, industrial automation and automotive appli-

cations mostly C is used, in this case it was also the language chosen and the rules

apply to it. The benefit of using a smaller number of coding rules lies in the fact

that it is more likely that they are going to be used as opposed to hundreds of rules

and guidelines. The author of [26] claims, that the quality of source code improved

within the NASA/UPL Laboratory for Reliable Software by using these rules.

While the first few rules ensure the creation of clear and transparent control flow

structures that are easier to build, test and analyse, the other rules address some

“fancy” features of the language C, which work in principle, but are quite error-

prone. Dynamic memory allocation is discouraged because of the run-time problems

with temporally deterministic memory management in environments with potentially

very limited memory resources. Some rules address the fault detection and removal

techniques described later. These rules correlate very strongly with the guidelines

and regulations that have been assembled and classified in the standard IEC 61508

described previously.

Fault Removal

The fault prevention techniques presented so far are useful during specification and

design. Here we examine a designed system (model) in order to detect the possible

presence of residual faults. Some techniques require the presence of specifications,

while others are derived from the designed system. Their demonstration strength

ranges from partial functional simulation to complete formal proof. They may apply

to a system that has not yet been fully designed or implemented (in hardware and

software) or to a final product.

Verification without specifications aims at checking the design model (system)

for the existence of undesired properties such as deadlocks or non-determinism. Ver-

ification with specifications is possible by the following methods:

∙ Bottom-up reverse transformation of the designed system/model into a specifica-

tion and its comparison with the actual specification

∙ Top-down verification by bivalent specification to designed system/models and

their comparison by simulation sequences or by checking functional static and/or

dynamic properties

6.1 Design for Predictability and Dependability 57

A simulation sequence, also known as “test sequence”, generally consists of tuples

of inputs and expected outputs, which are applied to the design model (system) and

compared with the results obtained. If they are equal to the expected outputs, the

system “conforms to the specifications”. For real-time systems, they should be en-

hanced by the time dimension. The level of trust in the results depends on the quality

of the test sequence. Generally, it depends on the level of structural knowledge about

the design model (system) — we speak about black-box (no knowledge), grey-box

(little knowledge) and white-box (complete knowledge) tests.

Short Test Sequences

A system may be designed in many different ways depending on the nature of the

problem domain, required functionality, and a number of QoS parameters result-

ing in very different implementations: circuits containing electronic and mechanical

components, logic gates (arrays), or sequential program code and very likely com-

binations thereof. Specific design methods naturally integrate the previously stated

remarks on testability connecting the most suitable test methods with the respective

design methods.

Often ideas on testability can be transferred from mechanical to electrical engi-

neering and further to program design and test, which makes integration tests easier

with hybrid systems being composed of all three and possibly additional (e.g. chem-

ical) kinds of devices.

The subsequent examples show how fault detection and removal techniques have

been integrated with specific design methods. This, however, does not mean that the

use of the principles presented is restricted to the domains indicated.

Built-In Test (BIT): This technique consists of adding a specific standard interface

to the system under test, which controls and facilitates access from the exter-

nal tester, thus increasing controllability and observability (see Fig. 6.2). As a

consequence, the test sequences are simpler, and their application is facilitated.

Hence, testing is also simpler. The drawback is that the technique introduces

some additional overhead into hardware components and/or software code.

Tester Process

Test
interface

Fig. 6.2. BIT test schema

Boundary Scan: In IEEE 1194-1 the IEEE Joint Test Action Group (JTAG) defined a

standardised interface to test integrated circuits. Today, the majority of integrated

circuit manufacturers uses this standard to test their designs of application-

specific integrated circuits, microprocessors and microcontrollers.

58 6 Design of Real-time Systems for QoS

Functional
part of the

circuit

Inputs Outputs

Bypass register

Instruction register

TAP
controller

M
U
X

TMS
TCK
(TRST)

TDO

TDI

Boundary Scan Register

Fig. 6.3. Schema of Boundary Scan Register

addition of some test inputs/outputs and an internal logic:

Test bus (“Test Access Port” (TAP)) composed of a series of input/output signals

(TDI, TDO) and a test clock (TCK)

Integrated logic module comprising:

1. A series register (“Boundary Scan Register”) to read in the test inputs

and read out the test results

2. A bypass register to reach other modules located below in the test chain

of the system’s modules

3. An automaton (TAP Controller) associated with an instruction register,

which may process certain test operations. It controls the various opera-

tions in normal or test mode. In normal mode, the boundary scan register

cells are set so that they do not affect the circuit. In test mode, however,

the cells are latched in a way enabling a data stream between them —

once a complete data word has been read in, it can be latched into place.

The cell at the destination pin of the circuit can be programmed to ver-

ify if the circuit trace correctly interconnects the two pins (input and

output).

Each cell (see Fig. 6.4) of the Boundary Scan Register has four modes of func-

tioning. In “normal mode” (1) the cell’s output multiplexer (Output MUX) trans-

fers the data coming from an input pin of the circuit to the output of the cell

(Data Out), which is connected to the input of the core logic; in “update mode”

(2) the output multiplexer sends the contents of the Parallel Output Register to

the cell’s output; in “capture mode” (3) the input data (Data In) is directed by the

input multiplexer (Input MUX) to the Shift Register in order to be loaded when

6.1 Design for Predictability and Dependability 59

the Clock DR occurs; in “shift mode” (4) the bit of each cell of the Boundary
Scan Register (its Shift Register) on the Inputs side is sent to the following cell

via the Scan Out line, whilst the signal Scan In coming from the previous cell

is loaded into the flip-flop of the cell’s Shift Register. The output cells use the

same principle. As the cells can be used to force data into the circuit, they can

set test conditions. The relevant states can then be fed back into the test system

by clocking the data word back so that it can be analysed.

S1

S2

D

C ENB

Input m ux A

H

Q1

Q8

ENB

Shift
r egister

A

H

ENB

Parallel
output r egister

S1

S2

D

C ENB

Output mux

Data in
(circuit pin)

Shift DR Scan out Mode

Data out
(core logic)

Scan in Clock DR Update DR

Fig. 6.4. Boundary Input Cell

The circuit logic described allows one to control all inputs and outputs of the

circuit tested with the help of a shift register, which can be loaded and unloaded

in series. It is also possible to pass information across a circuit in order to reach

a circuit situated below it, or to receive information coming from this circuit.

Adopting this technique, it is possible for a test system to gain test access to a

circuit board. As most current boards are very densely packed with components

and lines, it can be very difficult for test systems to access the relevant areas of

a board via probes for test purposes. The boundary scan makes this possible. In

some cases the boundary scan technique is not applied to a circuit as a whole.

Then, we say that this circuit implements a “partial scan” as opposed to a “full

scan”.

The same hardware circuit test logic can also be applied to software. “Scan de-

sign” is appropriate for circuits or software modules having a few inputs and out-

puts, since otherwise too long test sequences would result. A natural approach

to solve this problem is to partition circuits/software into parts called “scan do-

mains”. Once the partial “unit tests” are complete, “integration tests” can be

performed.

Built-In Self Test (BIST): The BIT technique (see Fig. 6.2) requires an external tester

(e.g. “off-chip test” in hardware design), while with the BIST technique (see

Fig. 6.5) the tester is integrated into the tested system (e.g. “on-chip test” in hard-

Q1

Q8

60 6 Design of Real-time Systems for QoS

ware design). The method requires a greater investment in design. The BIST ap-

proach improves the principle of integrating the tester functions into the system

under test. This solution is only acceptable if its complexity and the expenditure

are not excessive. It is justified when the coverage of faults tested is increased

considerably. The technique allows the system to test itself, usually off-line, with

the normal function of the system being suspended during the test. Usually, the

test operations are run during power-up or maintenance operations. Some fault

tolerance techniques require on-line monitoring of inputs and outputs. In this

case, BIST functions are integrated into the normal functionality of the system

under test. BIST techniques are integrated in more and more industrial products.

Process

Generation

Compaction
Signature
analysis

Function

Good/
bad

Fig. 6.5. The BIST test schema

As an example, the generation of pseudo-random test patterns for BIST em-

ploying a Linear Feedback Shift Register (LFSR) is presented. The 3-bit LFSR

shown in Fig. 6.6 is a synchronous sequential circuit, using D flip-flops and XOR

gates, which generates a pseudo-random output pattern of 0s and 1s. Suppose the

circuit is initialised in state (Q1,Q2,Q3)=(1,1,1); it produces a cyclic output se-

quence with an (Q1,Q2,Q3) output vector for any clock pulse. Such an LFSR can

be used as a test sequence generator in an integrated circuit (DUT – Device Un-

der Test) as shown in Fig. 6.7. It can also be used as a compaction circuit (PSA

– Parallel Signal Analyser) in order to reduce the length of the output sequence

(see Fig. 6.8).

Fault Tolerance

Fail-safe or fail-secure is the property of a system/device that, if (or when) it fails,

it fails in such a way not to cause harm, or only minimum harm, to other devices or

danger to personnel.

Fail-safe operation means automatic protection of programs and/or processing

systems when a hardware or software failure is detected in a computer system.

Fault tolerance is the property that enables a system to continue operating prop-

erly upon occurrence of a failure in (or of one or more faults within) some of its

components.

6.1 Design for Predictability and Dependability 61

D

C Q

QS

R

D

C Q

QS

R

D

C Q

QS

R

1
0

1
0

1
0

1
0

0 01

2
0

Fig. 6.6. 3-bit LFSR

Input
Output

LFSR

Circuit
(DUT)

M
U
X

Q

CLK Test

Fig. 6.7. Test sequence generation

Outputs
PSA

Circuit
(DUT)

Signature

Fig. 6.8. Test result compaction

Protective fault tolerance mechanisms are defined and implemented during the

system creation phases of the life-cycle, whereas their actions are effective during

the operational phase. Fault prevention and removal techniques allow one to increase

reliability (reducing the probability of fault occurrences), or availability in the case

of repairable systems (e.g. detect-and-repair mechanisms). Observing safety crite-

ria leads one to examine techniques related to on-line testing and fail-safe design.

Here, we want to provide a system designed with the highest degree of dependability

by integrating mechanisms that allow for full continuation of its mission despite the

presence of faults, thus increasing its integrity. Such mechanisms may deliver full

62 6 Design of Real-time Systems for QoS

service at no reduction in performance. Due to the presence of faults, however, the

performance usually decreases to an acceptable level (“graceful degradation”). Em-

ploying fault tolerance techniques has a direct positive impact on safety, reliability,

and availability.

In the sequel, the basic characteristics of fault tolerance are dealt with in more de-

tail. Fault-tolerant systems are also characterised in terms of planned and unplanned

service outages. They are usually regarded/measured from the application point of

view, and quantified by availability as a percentage (e.g. an availability of 95.9%

means that a system is up this fraction of time).

Fault tolerance by replication: The first fundamental characteristic of fault toler-

ance is “no single point of failure”. It is addressed by spare components (repli-

cas) in three ways:

1. Replication: providing multiple identical instances of the same system or

device, directing tasks or requests to all of them in parallel and choosing the

correct result on the basis of a quorum

2. Redundancy: providing multiple identical instances of the same system or

device and switching to a remaining one in case of a failure (failover)

3. Diversity: providing multiple different implementations of the same spec-

ification, and using them like replicated systems to cope with errors in a

specific implementation

A good example of replication is a redundant array of independent disks (RAID)

representing a fault-tolerant storage device using data redundancy.

A lockstep fault-tolerant system consists of replicated elements operating in par-

allel. At any time, all replicas of each element should be in the same state. The

same inputs are provided to each replica, and the same outputs are expected.

The replicas’ outputs are compared using a voting circuit. A system with two

replicas for each element is termed Dual Modular Redundant (DMR). In this

case the voting circuit can detect a mismatch, only, and recovery relies on other

methods. A system with three replicas for each element is termed Triple Modu-
lar Redundant (TMR). The voting circuit can then determine which replication

is in error and output the correct result based on a two-to-one vote. After that,

the voting circuit usually switches to DMR mode. This model can be applied to

a larger number of replicas, e.g. pair-and-spare. Here, two replicated elements

operate in lockstep as a pair, with a voting circuit that detects any mismatch be-

tween their operations and outputs a signal indicating when there was an error.

Another pair operates exactly in the same way. A final circuit selects the output

of the pair not being in error.

No single point of repair: With this option enabled, a system must continue to oper-

ate without interruption during the repair process if it experiences a failure.

Fault isolation to the failing component: When a failure occurs, a system must be

able to isolate the failure to the erroneous component. This requires dedicated

failure detection mechanisms to be added, solely for the purpose of fault isola-

tion.

6.1 Design for Predictability and Dependability 63

Fault containment: This is to prevent the propagation of failures. With some failure

handling mechanisms a failure may be propagated to the rest of a system, possi-

bly causing it to fail completely. Mechanisms that isolate a failing component to

protect the system are required.

Reversion modes: With some failure mechanisms the survivability of a system, its

operator, or the final results may be endangered. To prevent such losses, mission-

critical systems (e.g. in defence or avionics) provide for safe modes using inter-
lock mechanisms or software.

Example: Safety Shell

Since the two most important properties of real-time systems are dependability and

timeliness, for their safety-oriented design a so-called system “safety shell” has been

defined [45, 46]. It combines a suitable combination of the above listed options

and mechanisms (replication, no single point of failure, fault containment) to ensure

timely, fault-tolerant execution.

The software safety shell shown in Fig. 6.9 depends on a guard to ensure safe ex-

ecution in a system. The guard is a low-level construct that detects faults and, then,

forces the system to transfer to a safe state instead of a hazardous one. As can be

seen, the “Primary Control” is guarded from erroneous input from the environment

by the “State Guard”. Its functional correctness is ensured by defining well formed

algorithms with strict limitations on their I/O range, and “Exception Handlers” main-

taining safe and stable states of operation. At the same time, the timely, synchronous

operation of the system is guarded by the “Timing Guard”, implemented by, e.g.

“watchdogs” for critical operations.

State guard

Timing guard Primary control Exception handler

Protected I/O

Physical environment

Timing
violation

Response
Commands Other

safety
violations

Response Output changes

Fig. 6.9. Safety shell

64 6 Design of Real-time Systems for QoS

Fault Forecasting

Fault forecasting aims to estimate the presence of faults (number and severity). It

implies the means that allow the evaluation or measurement of reliance. The as-

sessment approaches available can be categorised into quantitative and qualitative

dependability assessment.

The objective of qualitative assessment is to examine faults, errors, potentiality

of failures, and their effects. The assessment methods are twofold — deductive and

inductive. In the deductive approach, the failures anticipated are derived from faults

and errors. In the inductive approach, the potential failures are examined from present

faults or errors.

In the standard EN 13306 [20] reliability is defined as: “The ability of an item to
perform a required function under given conditions for a given time interval,” where

item denotes a device (product) considered for maintenance or maintenance man-

agement. Quantitative assessment considers reliability as a function of time which

expresses the conditional probability that a system has survived in a specified envi-

ronment until time t, given that it was operational at time 0. This definition is the

origin of the quantitative QoS parameters (e.g. MTBF, MTTF and MTTR).

A product’s reliability function does not increase with time. Its decreasing ten-

dency is due to the subjacent phenomenon of degradation of electronic devices. In the

case of software, once this function has reached a certain level, it remains constant

due to the absence of ageing (not considering maintenance operations).

Different types of reliability tests are carried out to perform reliability evaluation
with respect to test stop conditions such as fixed duration, fixed number of faults

reached, result-based end criteria, and combinations thereof, and with the possibility

of accelerated — avalanche/stress — tests.

0

1

R

MTTR t

Temp.

Time

Fig. 6.10. The exponential law

Reliability is analysed by reliability models, which are mathematical functions of

time. The exponential law is the simplest of these laws. It provides the probability of

survival by an exponential function, which decreases with time (see Fig. 6.10). The

6.2 Security-oriented Design 65

failure rate λ expresses the probability of failures occurring per hour, and is gener-

ally considered to be a constant throughout time. The R(t) law is often associated

with the simple estimators:

MTTF “Mean Time To Failure” (also called Mean Time to First Failure – MTFF)

for non-repairable systems (e.g. a mission terminating as soon as a breakdown

happens)

MTBF “Mean Time Between Failures” for repairable systems (e.g. a component,

which broke down, is repaired/replaced and put back into operation)

If a reliability function described by the exponential law has a constant failure rate,

the average value of this function is: MTBF (or MTFF) = 1
λ and is expressed in

powers of 10 hours.

Failure rates are generally estimated from survival tests applied to significant

large samples of components. The duration of these tests is short as compared to a

product’s normal life-cycle. Then, by using acceleration factors, the failure rates of,

e.g. electrical circuits are deduced. These tests are thus called accelerated tests. A

component’s degradation process can be accelerated by increasing the temperature,

and also by increasing the voltage of the power supply. Most failure mechanisms in

integrated circuits, for instance, are based on physiochemical reactions that can be

accelerated (stress test) by temperature in accordance with the Arrhenius equation:

λb = A ⋅e− E
kT , where λb is the process failure rate, E is the activation energy (in [eV]),

k is the Boltzmann constant (8.6 ⋅10−5 [V/K]), T is the temperature (in [K]) and A is

a constant. The real value of a given circuit’s λ is deduced from ∏λbi) where the bi
identify the components of the circuit.

6.2 Security-oriented Design

Addressing security generally comprises the continuous cycle of risk management

and response planning. Because of changes in the environment or the system itself,

which may also be time-related, it is impossible to set a fixed strategy. Hence, a

cyclic approach to security management [3] has proven most successful. However, a

number of guidelines and standards has been developed for security-aware design.

Risk management and the response cycle comprise the following steps: (1) upon

detection, a threat agent gives rise to a threat; (2) based on the threat, vulnerability is

explored; (3) a discovered vulnerability leads to a risk, which could damage assets

or cause exposure, depending on the level/kind of the risk; and (4) the threat must

be safeguarded by the threat agent. There are two ways a threat agent can respond

to a threat: (1) by mitigation to minimise loss or probability of exposure, or (2) by

acceptance with active or passive handling of the security violation. In the latter case,

depending on the type of system and the kind of security violation, proper handling

is chosen. With intrusions via the Internet active handling means, for instance, to

give an intruder bogus results in order to sustain security and discover its identity,

whereas passive handling means ending the intrusion process in a controlled way in

order to prevent it from causing any (further) damage to the security of the system.

66 6 Design of Real-time Systems for QoS

Contingency planning has been developed to systematically integrate security

management into technical and business processes. It is composed of four major

steps:

1. (System/Business) Impact Analysis (BIA): consisting of threat attack identifica-

tion and prioritisation, business unit analysis, attack success scenario develop-

ment, potential damage assessment and subordinate plan classification

2. Incident Response Planning: comprising incident planning, incident detection,

incident reaction and incident recovery

3. Disaster Recovery Planning: creating plans for disaster recovery, crisis manage-

ment and recovery operations

4. (Business) Continuity Planning: establishing continuity strategies, plans for con-

tinuity of operation and continuity management

The areas of security pertaining to real-time systems can be grouped into the follow-

ing two main categories:

1. Environmental: physical security, personal security, operation security and com-

munication security

2. Technical: network security, information security and computer security

Measures coping with environmental threats to security are taken in order to prevent

damage to a system either caused by natural disasters and atmospherical effects or

the logistics behind the operation or by the personnel. Although very important, these

issues are not discussed here — they represent the responsibility of management and

security engineers. The issues to be considered here represent the technical aspects

of ensuring security of operation.

Technical security issues with computing systems encompass mainly three areas:

1. Computer system security

2. Computer network security

3. Information security

As computer system security the security of a computing system’s operation is con-

sidered, by taking failure probabilities of, e.g. processors and data storages into ac-

count. These issues are handled predominantly by choosing an appropriate architec-

ture for the computing system to allow for its proper operation, even in the case of

component failure, by component replication as well as by appropriate failure diag-

nostics and handling. Here it is of utmost importance not to allow a single point of

failure in security-critical designs. Usually the computing system’s operation shall

be degraded gracefully until a malfunctioning component is repaired or replaced;

however, it shall not deny service. Here, real-time restrictions apply to worst-case

response times and worst-case repair times.

Computer network security is partly included in computer system security, es-

pecially with distributed computing systems. The issues here are mainly the same,

except that they involve hardware and software interfaces and drivers, which must

ensure data integrity and communication network availability. The basic principle of

replication to avoid a single point of failure also pertains to communication networks.

6.2 Security-oriented Design 67

It is only achieved by different means, viz., line replication. Communication lines are

usually chosen for transmission speed during normal operation, but for safety during

the reduced (on-failure) mode of operation. An issue partly also belonging to infor-

mation security is here dealt with as well, namely, data security. The information

transferred on a network is not only encoded in packages to be correctly processed

by the communication drivers, but also encrypted in order to minimise the possibility

of extracting information from the data packages by intruders. Real-time restrictions

applying here concern network propagation delays and times for re-routing messages

on “healthy lines” in the case of broken connection lines.

Information security comprises information integrity as well as confidentiality.

Integrity is ensured by the former two areas of technical security, whereas confiden-

tiality is achieved by means of authentication and authorisation. These mechanisms

are meant to ensure that only authorised individuals have access to sensitive infor-

mation like, e.g. records of production processes, medical examinations, or financial

transactions. To authorise them, these individuals or organisations need to be au-

thenticated by the data host. Their identity is determined by lock-key mechanisms,

which must be safeguarded in order not to reveal the identities to third parties who

might misuse the information. The identification mechanisms involve biometrical

information (e.g. fingerprints or iris scans) or electronic keys. After an individual is

authenticated in a computing system the data flow transferring information across the

network is encrypted. The time for authentication needs to be short to prevent brute

force attacks. Also the durations of activities need to be monitored, e.g. in order to

prevent that someone’s data session is taken over by an intruder.

6.2.1 Security Layers

Since security attacks have become more frequent and more sophisticated, investing

in single-layer security systems is of limited use. Security experts have built a layered

security architecture [2] (see Fig. 6.11) and associated different security management

strategies according to their respective strengths and limitations with each individual

layer:

Security Policy Layer: this should encompass all aspects of employee awareness of

security and responsibility to network, e-mail, Internet and password usage.

Physical Layer: this keeps computers (servers, workstations, portable devices, soft-

ware media, data back-up media, switches, routers, firewalls, etc.) locked down

and safe from physical theft and intrusion. Any device must have a designated

owner who is responsible for its security. The owner should have appropriate

resources, skills and information to fulfil this responsibility. Network equipment

and software should be restricted to authorised personnel.

Data Layer: this is limited to the accessibility of data on any given network. The

desired outcome is one that restricts data access to only those users who are

required to have access. This protects privacy and provides for accountability.

Web application gateways, e-mail spam filters, XML security systems and Se-

cure Sockets Layer (SSL) virtual private networks help to ensure that application

traffic is clean, efficient and secure.

68 6 Design of Real-time Systems for QoS

Application Layer: this provides an automated security layer to protect configura-

tions on hosts and includes host-based anti-virus applications, intrusion preven-

tion software, spyware tools and personal firewalls. With the most advanced set

of tools, these products provide essential “last-resort” security for applications

and networks to thwart any potential threat. As with most software, however,

human intervention is required to ensure that the solution is constantly updated.

Network Perimeter Layer (NPL): this utilises hardware and conceptual design to

provide a layer of protection from outside a network. To create this layer of

protection, the NPL utilises firewalls, Virtual Private Networks (VPNs), routers,

intrusion detection and prevention software and web content filtering.

Management Layer: this is critical to the continued security of an overall network

∙ to consolidate the approach to security management, assess the overall vul-

nerability, and manage patches and updates carefully;

∙ to persistently monitor all security layers for compliance and vulnerabilities.

This includes creating a security framework that makes it possible to iden-

tify potential threats early, accurately analyse risks from emerging threats

and swiftly develop effective remedial strategies as well as protect an en-

tire organisation, from the borders of the corporate network down to each

individual computing system (component). In general, this requires supervi-

sion to ensure consistency in assessing overall vulnerability and managing

patches and updates for any software and policy.

Data

Security
policy

Application

Perimeter

Management

Physical

Fig. 6.11. Security layers

6.2 Security-oriented Design 69

From the security point of view, real-time systems do not differ from other com-

puting systems. Sustaining their QoS through security measures is the primary goal,

and the tools and methods to achieve this are basically the same. Hence, there is

no special notion of real time here, and no distinction is made with respect to the

concepts of security. Some security mechanisms do have real-time constraints, but

they do not pertain to the systems or the applications. One may establish trade-offs

between levels of security and QoS levels, however, since security mechanisms also

require computing time and resources, system performance may be affected. In the

sequel the most important technical security mechanisms are assessed in more detail.

Encryption: Typical examples of encryption mechanisms for networked systems

are Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer

(SSL). They represent cryptographic protocols providing secure communica-

tions on the Internet (for web browsing, e-mail and other data transfers).

The TLS protocol allows applications to communicate across a network in a

way that prevents eavesdropping, tampering and message forgery. It provides

endpoint authentication and communication privacy over the Internet using cryp-

tography. Typically, only the server is authenticated (i.e. its identity is ensured),

while the client remains unauthenticated. The next level of security – in which

both conversation partners are sure with whom they are communicating – is

known as mutual authentication. It requires Public Key Infrastructure (PKI) de-

ployment to clients unless Pre-Shared Key cypher suits (TLS-PSK) or Secure

Remote Password (TLS-SRP) are used, which provide strong mutual authenti-

cation without needing to deploy a PKI. The TLS protocol involves three basic

phases:

1. Peer negotiation for algorithm support

2. Public key exchange and certificate-based authentication

3. Symmetric cipher encryption

During the first phase, the client and server negotiate cipher suites, which com-

bine one cipher from each of the following:

∙ Public-key cryptography (e.g. RSA, Diffie-Hellman, DSA)

∙ Cryptographic hash function (e.g. MD2, MD4, MD5, SHA)

∙ Symmetric ciphers (e.g. RC2, RC4, IDEA, (Triple) DES, AES, Camellia)

Usually, attacks against a “cryptosystem” without known vulnerability, e.g. Dig-

ital Encryption Standard (DES) [64] or Advanced Encryption Standard (AES)

[51], are brute force ones trying to find secret keys by exhaustive search in the

key spaces. Real-time restrictions apply in order to prevent attackers from being

given enough time to “crack” the security keys.

Access Control: Due to the large variety of access control mechanisms from pass-

word protection to access control devices (e.g. fingerprint readers, iris scanners,

RFID), depending on the level of required security this term does not uniquely

identify the access control process. In any case, successful access control en-

compasses both authentication and authorisation.

The different types of authentication mechanisms relate to something you know,

something you have, something you are, or something you produce. They have

70 6 Design of Real-time Systems for QoS

time limitations, as otherwise we would not be able to distinguish authentication

requests in the course of a lengthy session, during which an attacker could run a

series of access attempts and eventually succeed.

Authorisation must provide services to any authenticated user, members of a

group, and/or authorisation across multiple systems. Dial-up protection is used

to prevent intrusion by unauthorised individuals, which may use a network’s

Internet connection to gather information or cause damage. Timing limitations

also pertain to authorisation. During a certain period of time, an individual shall

receive only one authorisation. Also, during a session, the authorisation system

may perform an “inactivity logout” canceling the authorisation after a lengthy

period of inactivity. In practice this could otherwise mean an open gate for an

intruder accessing the individual’s computer during that time.

Since embedded networks also have some Internet connectivity for monitoring

or maintenance, these connections are targeted by attackers to collect data from

the embedded network or computer systems. In order to detect attackers, scan-

ning and analysis tools may be employed to sense extraordinary executions or

information leaks. Intrusion detection systems build on sophisticated authenti-

cation and access control algorithms as well as on encryption systems to prevent

sensible data leaving intranets, which could be intercepted on the Internet.

Firewalls: In information security, a firewall is any device that prevents a specific

type of information from moving between two networks. A firewall may be a

separate computer system, a service running on an existing router or server or a

separate network containing a number of supporting devices. Access restrictions

are applied using authentication mechanisms.

6.3 Concluding Remarks on Design for QoS

All aspects of system design and development discussed are relevant for a designed

product’s QoS. Although they address different QoS criteria, they all contribute to

the overall QoS. A popular fault prevention technique is to introduce capacity re-
serves into the consideration of physical and timing constraints, which reduce the

risk of failure. Apart from introducing resource redundancy, the mentioned temporal

analysis tools may be helpful to estimate appropriate slack times in the prescribed

timing constraints rather than just using rules of thumb based on expert knowledge.

In general, however, fault prevention must be viewed in a broader context and dealt

with in multiple phases of system development. The concepts of BIT and BIST orig-

inate from hardware diagnostics, but their principles can be transferred to software

provided that the number of inputs and outputs is limited. In safety-critical environ-

ments, the considerations for Safety Integrity Level, life-cycle and fault tolerance

mechanisms determine the way systems are devised and maintained. In security-

critical applications, the mentioned security measures need to be employed to pre-

vent damage to human health and machinery, or undesired data leakage of sensible

information.

