Skip to main content

Plaque Size, Growth, Echogenicity and Cardiovascular Risk: The Tromsø Study

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

In the late 1980s, ultrasound measurements of atherosclerosis in the carotid arteries were introduced in epidemiological population studies on cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salonen JT, Seppänen K, Rauramaa R, Salonen R. Risk factors for carotid atherosclerosis: the Kuopio Ischaemic Heart Disease Risk Factor Study. Ann Med. 1989;21:227–229.

    Article  PubMed  CAS  Google Scholar 

  2. Bots ML, Breslau PJ, Briët E, et al. Cardiovascular determinants of carotid artery disease. The Rotterdam Elderly Study. Hypertension. 1992;19:717–720.

    PubMed  CAS  Google Scholar 

  3. The ARIC investigators. The atherosclerosis risk in communities (ARIC) study: design and objectives. Am J Epidemiol. 1989;129:687–702.

    Google Scholar 

  4. Fried LP, Borhani NO, Enright P, et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. 1991;1:263–276.

    Article  PubMed  CAS  Google Scholar 

  5. Touboul P-J, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004–2006): an update on behalf of the Advisory Board of the 3 rd and 4th watching the risk symposium, 13th and 15th European stroke conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23:75–80.

    Article  PubMed  Google Scholar 

  6. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33:2916–2922.

    Article  PubMed  Google Scholar 

  7. Bertges DJ, Muluk V, Whittle J, et al. Relevance of carotid stenosis progression as a predictor of ischemic neurological outcomes. Arch Intern Med. 2003;163:2285–2289.

    Article  PubMed  Google Scholar 

  8. Sabeti S, Schlager O, Exner M, et al. Progression of carotid stenosis detected by duplex ultrasonography predicts adverse outcomes in cardiovascular high-risk patients. Stroke. 2007;38:2887–2894.

    Article  PubMed  Google Scholar 

  9. Spence JD, Hackam DG. Treating arteries instead of risk factors: a paradigm change in management of atherosclerosis. Stroke. 2010;41:1193–1199.

    Article  PubMed  Google Scholar 

  10. Li R, Duncan BB, Metcalf PA, et al. B-mode-detected carotid artery plaque in a general population. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Stroke. 1994;25:2377–2383.

    Article  PubMed  CAS  Google Scholar 

  11. Polak JF, O’Leary DH, Kronmal RA, et al. Sonographic evaluation of carotid artery atherosclerosis in the elderly: relationship of disease severity to stroke and transient ischemic attack. Radiology. 1993;188:363–370.

    PubMed  CAS  Google Scholar 

  12. Joakimsen O, Bønaa KH, Stensland-Bugge E, Jacobsen BK. Age and sex differences in the distribution and ultrasound morphology of carotid atherosclerosis. The Tromsø Study. Arterioscler Thromb Vasc Biol. 1999;19:3007–3013.

    Article  PubMed  CAS  Google Scholar 

  13. Polak JF, Shemanski L, O’Leary D, et al. Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older. Radiology. 1998;208:649–654.

    PubMed  CAS  Google Scholar 

  14. Mathiesen EB, Bønaa KH, Joakimsen O. Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis. The Tromsø Study. Circulation. 2001;103:2171–2175.

    PubMed  CAS  Google Scholar 

  15. Grønholdt M-LM, Nordestgaard BG, Schroeder TV, Vorstrup S, Sillesen H. Ultrasonic echolucent carotid plaques predict future strokes. Circulation. 2001;104:68–73.

    Article  PubMed  Google Scholar 

  16. Sabetai MM, Tegos TJ, Nicolaides AN, et al. Hemisperic symptoms and carotid plaque echomorphology. J Vasc Surg. 2000;31:39–49.

    Article  PubMed  CAS  Google Scholar 

  17. Honda O, Sugiyama S, Kugiyama K, et al. Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J Am Coll Cardiol. 2004;43:1177–1184.

    Article  PubMed  Google Scholar 

  18. Hirano M, Nakamura T, Kitta Y, et al. Assessment of carotid plaque echolucency in addition to plaque size increases the predictive value of carotid ultrasound for coronary events in patients with coronary artery disease and mild carotid atherosclerosis. Atherosclerosis. 2010;211:451–455.

    Article  PubMed  CAS  Google Scholar 

  19. Johnsen SH, Joakimsen O, Fosse E, Arnesen E. Sex difference in carotid plaque morphology may explain the higher male prevalence of myocardial infarction compared to angina pectoris. The Tromsø Study. Scand Cardiovasc J. 2005;39:36–41.

    Article  PubMed  Google Scholar 

  20. Ebrahim SB, Papacosta O, Whincup P, et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women. The British Regional Heart Study. Stroke. 1999;30:841–850.

    Article  PubMed  CAS  Google Scholar 

  21. O’Leary DH, Polak JF, Kronmal RA, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. Stroke. 1992;23: 1752–1760.

    Article  PubMed  Google Scholar 

  22. Nieto FJ, Diez-Roux A, Szklo M, Comstock GW, Sharrett AR. Short- and long-term prediction of clinical and subclinical atherosclerosis by traditional risk factors. J Clin Epidemiol. 1999;52:559–567.

    Article  PubMed  CAS  Google Scholar 

  23. Mathiesen EB, Joakimsen O, Bønaa KH. Prevalence of and risk factors associated with carotid artery stenosis. The Tromsø Study. Cerebrovasc Dis. 2001;12:44–50.

    Article  PubMed  CAS  Google Scholar 

  24. Johnsen SH, Fosse E, Joakimsen O, et al. Monocyte count is a predictor of novel plaque formation. A 7-year follow-up study of 2610 persons without carotid plaque at baseline. The Tromsø Study. Stroke. 2005;36:715–719.

    Article  PubMed  Google Scholar 

  25. Johnsen SH, Mathiesen EB, Fosse E, et al. Elevated high-density lipoprotein cholesterol levels are protective against plaque progression. A follow-up study of 1952 persons with carotid atherosclerosis. The Tromsø Study. Circulation. 2005;112:498–504.

    Article  PubMed  CAS  Google Scholar 

  26. Mathiesen EB, Bønaa KH, Joakimsen O. Low high-density lipoprotein is associated with echolucent, soft carotid artery plaques. The Tromsø Study. Stroke. 2001;32: 1960–1965.

    Article  PubMed  CAS  Google Scholar 

  27. Notø ATW, Mathiesen EB, Brox J, Björkegren J, Hansen JB. Delayed metabolism of postprandial triglyceride-rich lipoproteins in subjects with echolucent carotid plaques. Lipids. 2008;43:353–360.

    Article  PubMed  Google Scholar 

  28. Notø ATW, Mathiesen EB, Brox J, Björkegren J, Hansen JB. The ApoC-I content of VLDL particles is associated with plaque size in persons with carotid atherosclerosis. Lipids. 2008;43:673–679.

    Article  PubMed  Google Scholar 

  29. Notø ATW, Mathiesen EB, Amiral J, Vissac AM, Hansen JB. Endothelial dysfunction and systemic inflammation in persons with echolucent carotid plaques. Thromb Haemost. 2006;96:53–59.

    Google Scholar 

  30. Notø ATW, Mathiesen EB, Østerud B, Amiral J, Vissac AM, Hansen JB. Increased thrombin generation in persons with echogenic carotid plaques. Thromb Haemost. 2008;99:602–608.

    Google Scholar 

  31. Joakimsen O, Bønaa KH, Stensland-Bugge E, Jacobsen BK. Population-based study of age at menopause and ultrasound assessed carotid atherosclerosis. The Tromsø Study. J Clin Epidemiol. 2000;53:525–530.

    Article  PubMed  CAS  Google Scholar 

  32. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA. 1998;280:605–613.

    Article  PubMed  CAS  Google Scholar 

  33. Simon JA, Hsia J, Cauley JA, et al. Postmenopausal hormone therapy and risk of stroke. The Heart and Estrogen-progestin Replacement Study (HERS). Circulation. 2001;103:638–642.

    PubMed  CAS  Google Scholar 

  34. Writing Group for the Women’s Health Initiative Investigators. Risks and Benefits of Estrogen Plus Progestin in Healthy Postmenopausal Women: Principal Results From the Women’s Health Initiative Randomized Controlled Trial. JAMA. 2002;288:321–333.

    Article  Google Scholar 

  35. Wassertheil-Smoller S, Hendrix S, Limacher M, et al. Effect of estrogen plus progestin on stroke in postmenopausal women: the women’s health initiative: a randomized trial. JAMA. 2003;289:2673–2684.

    Article  PubMed  CAS  Google Scholar 

  36. Muller M, van den Beld AW, Bots ML, Grobbee DE, Lamberts SW, van der Schouw YT. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation. 2004;109:2074–2079.

    Article  PubMed  CAS  Google Scholar 

  37. Tivesten A, Hulthe J, Wallenfeldt K, Wikstrand J, Ohlsson C, Fagerberg B. Circulating estradiol is an independent predictor of progression of carotid artery intima-media thickness in middle-aged men. J Clin Endocrinol Metab. 2006;91: 4433–4437.

    Article  PubMed  CAS  Google Scholar 

  38. Svartberg J, von Mühlen D, Mathiesen EB, Joakimsen O, Bønaa KH, Stensland-Bugge E. Low testosterone levels are associated with carotid atherosclerosis in men. J Intern Med. 2006;259:576–582.

    Article  PubMed  CAS  Google Scholar 

  39. Vikan T, Johnsen SH, Schirmer H, Njølstad I, Svartberg J. Endogenous testosterone and the prospective association with carotid atherosclerosis in men: the Tromsø study. Eur J Epidemiol. 2009;24:289–295.

    Article  PubMed  CAS  Google Scholar 

  40. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375: 132–140.

    Article  PubMed  Google Scholar 

  41. Fibrinogen Studies Collaboration, Kaptoge S, White IR, et al. Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: individual participant meta-analysis of 154,211 adults in 31 prospective studies. Am J Epidemiol. 2007;166:867–879.

    Article  PubMed  CAS  Google Scholar 

  42. Halvorsen DS, Johnsen SH, Mathiesen EB, Njølstad I. The association between inflammatory markers and carotid atherosclerosis is sex dependent: the Tromsø Study. Cerebrovasc Dis. 2009;27:392–397.

    Article  PubMed  Google Scholar 

  43. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108:2154–2169.

    Article  PubMed  Google Scholar 

  44. Furtner M, Kiechl S, Mair A, et al. Urinary albumin excretion is independently associated with carotid and femoral artery atherosclerosis in the general population. Eur Heart J. 2005;26:279–287.

    Article  PubMed  CAS  Google Scholar 

  45. Mykkänen L, Zaccaro DJ, O’Leary DH, Howard G, Robbins DC, Haffner SM. Microalbuminuria and carotid artery intima-media thickness in nondiabetic and NIDDM subjects: the Insulin Resistance Atherosclerosis Study (IRAS). Stroke. 1997;28:1710–1716.

    Article  PubMed  Google Scholar 

  46. Jørgensen L, Jenssen T, Johnsen SH, et al. Albuminuria as risk factor for initiation and progression of carotid atherosclerosis in non-diabetic persons: the Tromsø Study. Eur Heart J. 2006;28:363–369.

    Article  PubMed  Google Scholar 

  47. Perry IJ, Wannamethee SG, Whincup PH, Shaper AG, Walker MK, Alberti KG. Serum insulin and incident coronary heart disease in middle-aged British men. Am J Epidemiol. 1996;144:224–234.

    PubMed  CAS  Google Scholar 

  48. Yudkin JS, May M, Elwood P, et al. Concentrations of proinsulin like molecules predict coronary heart disease independently of insulin: prospective data from the Caerphilly Study. Diabetologia. 2002;45:327–336.

    Article  PubMed  CAS  Google Scholar 

  49. Kronborg J, Johnsen SH, Njølstad I, Toft I, Eriksen BO, Jenssen T. Proinsulin:insulin and insulin:glucose ratios as predictors of carotid plaque growth: a population-based 7 year follow-up of the Tromsø Study. Diabetologia. 2007;50:1607–1614.

    Article  PubMed  CAS  Google Scholar 

  50. Jørgensen L, Jenssen T, Joakimsen O, Heuch I, Ingebretson OC, Jacobsen BK. Glycated hemoglobin level is strongly related to the prevalence of carotid artery plaques with high echogenicity in nondiabetic individuals: the Tromsø Study. Circulation. 2004;110:466–470.

    Article  PubMed  Google Scholar 

  51. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292:490–495.

    Article  PubMed  CAS  Google Scholar 

  52. Price PA, June HH, Buckley JR, Williamson MK. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterioscler Thromb Vasc Biol. 2001;21:1610–1616.

    Article  PubMed  CAS  Google Scholar 

  53. Jono S, Ikari Y, Shioi A, et al. Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation. 2002;106:1192–1194.

    Article  PubMed  CAS  Google Scholar 

  54. Schoppet M, Sattler AM, Schaefer JR, Herzum M, Haisch B, Hofbauer LC. Increased osteoprotegerin serum levels in men with coronary artery disease. J Clin Endocrinol Metab. 2003;88:1024–1028.

    Article  PubMed  CAS  Google Scholar 

  55. Kiechl S, Schett G, Wenning G, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation. 2004;109(18):2175–2180.

    Article  PubMed  CAS  Google Scholar 

  56. Vik A, Mathiesen EB, Notø ATW, Sveinbjørnsson B, Brox J, Hansen JB. Serum osteoprotegerin is inversely associated with carotid plaque echogenicity in humans. Atherosclerosis. 2006;191:128–134.

    Article  PubMed  Google Scholar 

  57. Vik A, Mathiesen EB, Johnsen SH, et al. Serum osteoprotegerin, sRANKL and carotid plaque formation and growth in a general population – the Tromsø study. J Thromb Haemost. 2010;8:898–905.

    Article  PubMed  CAS  Google Scholar 

  58. Vik A, Mathiesen EB, Brox J, et al. Relation between serum osteoprotegerin and carotid intima media thickness in a general population – the Tromsø Study. J Thromb Haemost. 2010;8:2133–2139.

    Article  PubMed  CAS  Google Scholar 

  59. de Weerd M, Greving JP, Hedblad B, et al. Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke. 2010;41:1294–1297.

    Article  PubMed  Google Scholar 

  60. de Weerd M. Asymptomatic Carotid Artery Stenosis [PhD thesis]. Utrecht: University of Utrecht; 2010.

    Google Scholar 

  61. Johnsen SH, Mathiesen EB, Joakimsen O, et al. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men. A 6-year follow-up study of 6226 persons: the Tromso Study. Stroke. 2007;38: 2873–2880.

    Article  PubMed  Google Scholar 

  62. Spence JD, Hegele RA. Noninvasive phenotypes of atherosclerosis: similar windows but different views. Stroke. 2004;35:649–653.

    Article  PubMed  Google Scholar 

  63. Mathiesen EB, Johnsen SH, Wilsgaard T, et al. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke. A 10-year follow-up of 6584 men and women. The Tromsø Study. Stroke. 2011;42: 972–978.

    Article  PubMed  Google Scholar 

  64. Griffin M, Nicolaides A, Tyllis T, et al. Plaque area at carotid and common femoral bifurcations and prevalence of clinical cardiovascular disease. Int Angiol. 2010;29:216–225.

    PubMed  CAS  Google Scholar 

  65. del Sol AI, Moons KGM, Hollander M, et al. Is carotid intima-media thickness useful in cardiovascular disease risk assessment? The Rotterdam Study. Stroke. 2001;32:1532–1538.

    Article  PubMed  Google Scholar 

  66. Prati P, Tosetto A, Vanuzzo D, et al. Carotid intima media thickness and plaques can predict the occurrence of ischemic cerebrovascular events. Stroke. 2008;39: 2470–2476.

    Article  PubMed  Google Scholar 

  67. Rundek T, Arif H, Boden-Albala B, Elkind MS, Paik MC, Sacco RL. Carotid plaque, a subclinical precursor of vascular events: the Northern Manhattan Study. Neurology. 2008;70:1200–1207.

    Article  PubMed  CAS  Google Scholar 

  68. Barnett HJM, Taylor DW, Eliasziw M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med. 1998;339: 1415–1425.

    Article  PubMed  CAS  Google Scholar 

  69. European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MCR European Carotid Surgery Trial (ECST). Lancet. 1998;351: 1379–1387.

    Article  Google Scholar 

  70. The Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995;273:1421–1428.

    Article  Google Scholar 

  71. MRC ACST Collaborative Group. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet. 2004;363:1491–1502.

    Article  Google Scholar 

  72. Johnson JM, Kennelly MM, Desecare D, Morgan D, Sparrow A. Natural history of asymptomatic carotid plaque. Arch Surg. 1985;120:1010–1012.

    PubMed  CAS  Google Scholar 

  73. Sterpetti AV, Schultz RD, Feldhaus RJ, et al. Ultrasonographic features of carotid plaque and the risk of subsequent neurologic deficits. Surgery. 1988;104:652–660.

    PubMed  CAS  Google Scholar 

  74. Geroulakos G, Hobson RW, Nicolaides A. Ultrasonographic carotid plaque morphology in predicting stroke risk. Br J Surg. 1996;83:582–587.

    Article  PubMed  CAS  Google Scholar 

  75. Gray-Weale AC, Graham JC, Burnett JR, Byrne K, Lusby RJ. Carotid artery atheroma: comparison of preoperative B-mode ultrasound appearance with carotid endarterectomy specimen pathology. J Cardiovasc Surg (Torino). 1988;29: 676–681.

    CAS  Google Scholar 

  76. El-Barghouty NM, Geroulakos G, Nicolaides A, Androulakis A, Bahal V. Computer-assisted carotid plaque characterization. Eur J Vasc Endovasc Surg. 1995;9: 389–393.

    Article  PubMed  CAS  Google Scholar 

  77. Biasi GM, Sampaolo A, Mingazzini P, et al. Computer analysis of ultrasonic plaque echolucency in identifying high risk carotid bifurcation lesions. Eur J Vasc Endovasc Surg. 1999;17:476–479.

    Article  PubMed  CAS  Google Scholar 

  78. Fosse E, Johnsen SH, Stensland-Bugge E, et al. Repeated visual and computer-assisted carotid plaque characterization in a longitudinal population-based ultrasound study. The Tromsø Study. Ultrasound Med Biol. 2006; 32:3–11.

    Article  PubMed  Google Scholar 

  79. Jørgensen L, Joakimsen O, Mathiesen EB, et al. Carotid plaque echogenicity and risk of nonvertebral fractures in women: a longitudinal population-based study. Calcif Tissue Int. 2006;79:207–213.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mathiesen, E.B., Johnsen, S.H. (2011). Plaque Size, Growth, Echogenicity and Cardiovascular Risk: The Tromsø Study. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics