Skip to main content

Analysis of Histone Posttranslational Modifications from Nucleolus-Associated Chromatin by Mass Spectrometry

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

Abstract

Chromatin is unevenly distributed within the eukaryote nucleus and it contributes to the formation of morphologically and functionally distinct substructures, called chromatin domains and nuclear bodies. Here we describe an approach to assess specific chromatin features, the histone posttranslational modifications (PTMs), of the largest nuclear sub-compartment, the nucleolus. In this chapter, methods for the isolation of nucleolus-associated chromatin from native or formaldehyde-fixed cells and the effect of experimental procedures on the outcome of mass spectrometry analysis of histone PTMs are compared.

Stefan Dillinger and Ana Villar Garea have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boisvert F-M, van Koningsbruggen S, Navascués J et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  2. Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    Article  PubMed  CAS  Google Scholar 

  3. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  PubMed  CAS  Google Scholar 

  4. Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    Article  PubMed  CAS  Google Scholar 

  5. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  PubMed  CAS  Google Scholar 

  6. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  7. Busch H, Muramatsu M, Adams H et al (1963) Isolation of nucleoli. Exp Cell Res 24(Suppl 9):150–163

    Article  PubMed  Google Scholar 

  8. Monty KJ, Litt M, Kay ER et al (1956) Isolation and properties of liver cell nucleoli. J Biophys Biochem Cytol 2:127–145

    Article  PubMed  CAS  Google Scholar 

  9. Vincent W (1955) Structure and chemistry of nucleoli. Int Rev Cytol 4:269–298

    Article  Google Scholar 

  10. Vincent WS (1952) The isolation and chemical properties of the nucleoli of starfish oocytes. Proc Natl Acad Sci USA 38:139–145

    Article  PubMed  CAS  Google Scholar 

  11. Jordan EG (1984) Nucleolar nomenclature. J Cell Sci 67:217–220

    PubMed  CAS  Google Scholar 

  12. Németh A, Conesa A, Santoyo-Lopez J et al (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889

    Article  PubMed  Google Scholar 

  13. Németh A, Längst G (2011) Genome organization in and around the nucleolus. Trends Genet 27:149–156

    Article  PubMed  Google Scholar 

  14. Ghetti A, Pinol-Roma S, Michael WM et al (1992) hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20:3671–3678

    Article  PubMed  CAS  Google Scholar 

  15. Huang S, Deerinck TJ, Ellisman MH et al (1997) The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol 137:965–974

    Article  PubMed  CAS  Google Scholar 

  16. Matera AG, Frey MR, Margelot K et al (1995) A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 129:1181–1193

    Article  PubMed  CAS  Google Scholar 

  17. van Koningsbruggen S, Gierlinski M, Schofield P et al (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748

    Article  PubMed  Google Scholar 

  18. Andersen JS, Lam YW, Leung AKL et al (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  19. Andersen JS, Lyon CE, Fox AH et al (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  20. Emmott E, Rodgers M, Macdonald A et al (2010) Quantitative proteomics using stable isotope labeling with amino acids in cell culture (SILAC) reveals changes in the cytoplasmic, nuclear and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 9:1920–1936

    Article  PubMed  CAS  Google Scholar 

  21. Emmott E, Wise H, Loucaides EM et al (2010) Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells. J Proteome Res 9:5335–5345

    Article  PubMed  CAS  Google Scholar 

  22. Lam YW, Evans VC, Heesom KJ et al (2010) Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 9:117–130

    Article  PubMed  CAS  Google Scholar 

  23. Lam YW, Lamond AI, Mann M et al (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    Article  PubMed  CAS  Google Scholar 

  24. Pendle AF, Clark GP, Boon R et al (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  CAS  Google Scholar 

  25. Scherl A, Couté Y, Déon C et al (2002) Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100–4109

    Article  PubMed  CAS  Google Scholar 

  26. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed  CAS  Google Scholar 

  27. Kim SH, Koroleva OA, Lewandowska D et al (2009) Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell 21:2045–2057

    Article  PubMed  CAS  Google Scholar 

  28. Kim SH, Spensley M, Choi SK et al (2010) Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli. Nucleic Acids Res 38:3054–3067

    Article  PubMed  CAS  Google Scholar 

  29. Sullivan GJ, Bridger JM, Cuthbert AP et al (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20:2867–2874

    Article  PubMed  CAS  Google Scholar 

  30. Muramatsu M, Smetana K, Busch H (1963) Quantitative aspects of isolation of nucleoli of the Walker carcinosarcoma and liver of the rat. Cancer Res 23:510–518

    CAS  Google Scholar 

  31. Cousens LS, Gallwitz D, Alberts BM (1979) Different accessibilities in chromatin to histone acetylase. J Biol Chem 254:1716–1723

    PubMed  CAS  Google Scholar 

  32. Villar-Garea A, Imhof A (2006) The analysis of histone modifications. Biochim Biophys Acta 1764:1932–1939

    Article  PubMed  CAS  Google Scholar 

  33. Shah B, Kozlowski RL, Han J et al (2011) Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications. Meth Mol Biol 773:259–303

    Article  CAS  Google Scholar 

  34. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  35. Xian F, Hendrickson CL, Marshall AG (2012) High resolution mass spectrometry. Anal Chem 84:708–719

    Article  PubMed  CAS  Google Scholar 

  36. Kelleher NL, Zubarev RA, Bush K et al (1999) Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal Chem 71:4250–4253

    Article  PubMed  CAS  Google Scholar 

  37. Young NL, Dimaggio PA, Garcia BA (2010) The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci 67:3983–4000

    Article  PubMed  CAS  Google Scholar 

  38. Eliuk SM, Maltby D, Panning B et al (2010) High resolution electron transfer dissociation studies of unfractionated intact histones from murine embryonic stem cells using on-line capillary LC separation: determination of abundant histone isoforms and post-translational modifications. Mol Cell Proteomics 9:824–837

    Article  PubMed  CAS  Google Scholar 

  39. Guan S, Burlingame AL (2010) Data processing algorithms for analysis of high resolution MSMS spectra of peptides with complex patterns of posttranslational modifications. Mol Cell Proteomics 9:804–810

    Article  PubMed  CAS  Google Scholar 

  40. Young NL, DiMaggio PA, Plazas-Mayorca MD et al (2009) High throughput characterization of combinatorial histone codes. Mol Cell Proteomics 8:2266–2284

    Article  PubMed  CAS  Google Scholar 

  41. Ouvry-Patat SA, Torres MP, Quek HH et al (2008) Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 8:2798–2808

    Article  PubMed  CAS  Google Scholar 

  42. Chen L, Wang TC, Ricca TL et al (1987) Phase-modulated stored waveform inverse Fourier transform excitation for trapped ion mass spectrometry. Anal Chem 59:449–454

    Article  PubMed  CAS  Google Scholar 

  43. Guan S, Price JC, Ghaemmaghami S et al (2012) Compartment modeling for mammalian protein turnover studies by stable isotope metabolic labeling. Anal Chem 84:4014–4021

    Article  PubMed  CAS  Google Scholar 

  44. Garcia BA, Pesavento JJ, Mizzen CA et al (2007) Pervasive combinatorial modification of histone H3 in human cells. Nat Methods 4:487–489

    Article  PubMed  CAS  Google Scholar 

  45. Phanstiel D, Brumbaugh J, Berggren WT et al (2008) Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. Proc Natl Acad Sci U S A 105:4093–4098

    Article  PubMed  CAS  Google Scholar 

  46. Villar-Garea A, Forne I, Vetter I et al (2012) Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster. Nucleic Acids Res 40:1536–1549

    Article  PubMed  CAS  Google Scholar 

  47. Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608–614

    Article  PubMed  CAS  Google Scholar 

  48. Garcia BA, Mollah S, Ueberheide BM et al (2007) Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat Protoc 2:933–938

    Article  PubMed  CAS  Google Scholar 

  49. Hersman E, Nelson DM, Griffith WP et al (2012) Analysis of histone modifications from tryptic peptides of deuteroacetylated isoforms. Int J Mass Spectrom 312:5–16

    Article  PubMed  CAS  Google Scholar 

  50. Smith CM (2005) Quantification of acetylation at proximal lysine residues using isotopic labeling and tandem mass spectrometry. Methods 36:395–403

    Article  PubMed  CAS  Google Scholar 

  51. Jung HR, Pasini D, Helin K et al (2010) Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics 9:838–850

    Article  PubMed  CAS  Google Scholar 

  52. Zhang K, Tang H, Huang L et al (2002) Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 306:259–269

    Article  PubMed  CAS  Google Scholar 

  53. Zhang K, Yau PM, Chandrasekhar B et al (2004) Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: an application for determining lysine 9 acetylation and methylation of histone H3. Proteomics 4:1–10

    Article  PubMed  CAS  Google Scholar 

  54. Plazas-Mayorca MD, Zee BM, Young NL et al (2009) One-pot shotgun quantitative mass spectrometry characterization of histones. J Proteome Res 8:5367–5374

    Article  PubMed  CAS  Google Scholar 

  55. Bonenfant D, Towbin H, Coulot M et al (2007) Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics 6:1917–1932

    Article  PubMed  CAS  Google Scholar 

  56. Pesavento JJ, Yang H, Kelleher NL et al (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28:468–486

    Article  PubMed  CAS  Google Scholar 

  57. Su X, Zhang L, Lucas DM et al (2007) Histone H4 acetylation dynamics determined by stable isotope labeling with amino acids in cell culture and mass spectrometry. Anal Biochem 363:22–34

    Article  PubMed  CAS  Google Scholar 

  58. Lange V, Picotti P, Domon B et al (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222

    Article  PubMed  Google Scholar 

  59. Picotti P, Rinner O, Stallmach R et al (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7:43–46

    Article  PubMed  CAS  Google Scholar 

  60. Zheng Y, Sweet SM, Popovic R et al (2012) Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci U S A 109:13549–13554

    Article  PubMed  CAS  Google Scholar 

  61. Darwanto A, Curtis MP, Schrag M et al (2010) A modified “cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. J Biol Chem 285:21868–21876

    Article  PubMed  CAS  Google Scholar 

  62. Drogaris P, Le Blanc JC, Fitzgerald JE et al (2009) Enhanced protein detection using a trapping mode on a hybrid quadrupole linear ion trap (Q-Trap). Anal Chem 81:6300–6309

    Article  PubMed  CAS  Google Scholar 

  63. Villar-Garea A, Israel L, Imhof A (2008) Analysis of histone modifications by mass spectrometry. Curr Protoc Protein Sci Chapter 14:Unit 14 10

    Google Scholar 

  64. Joo WA, Speicher DW (2007) Protein detection in gels without fixation. Curr Protoc Protein Sci Chapter 10:Unit 10 6

    Google Scholar 

  65. Schuchard MD, Mehigh RJ, Cockrill SL et al (2005) Artifactual isoform profile modification following treatment of human plasma or serum with protease inhibitor, monitored by 2-dimensional electrophoresis and mass spectrometry. Biotechniques 39:239–247

    Article  PubMed  CAS  Google Scholar 

  66. Green GR, Do DP (2009) Purification and analysis of variant and modified histones using 2D PAGE. Methods Mol Biol 464:285–302

    Article  PubMed  Google Scholar 

  67. Ryan CA, Annunziato AT (2001) Separation of histone variants and post-translationally modified isoforms by triton/acetic acid/urea polyacrylamide gel electrophoresis. Curr Protoc Mol Biol Chapter 21:Unit 21 2

    Google Scholar 

  68. Waterborg JH, Harrington RE (1987) Western blotting of histones from acid-urea-Triton- and sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 162:430–434

    Article  PubMed  CAS  Google Scholar 

  69. Shechter D, Dormann HL, Allis CD et al (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457

    Article  PubMed  CAS  Google Scholar 

  70. Lindner H, Helliger W, Puschendorf B (1986) Histone separation by high-performance liquid chromatography on C4 reverse-phase columns. Anal Biochem 158:424–430

    Article  PubMed  CAS  Google Scholar 

  71. Lindner H, Sarg B, Meraner C et al (1996) Separation of acetylated core histones by hydrophilic-interaction liquid chromatography. J Chromatogr A 743:137–144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft SFB960 grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Dillinger, S., Garea, A.V., Deutzmann, R., Németh, A. (2014). Analysis of Histone Posttranslational Modifications from Nucleolus-Associated Chromatin by Mass Spectrometry. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics