Skip to main content

Considerations in the Analysis of Hydrogen Exchange Mass Spectrometry Data

  • Protocol
  • First Online:
Mass Spectrometry Data Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1007))

Abstract

A major component of a hydrogen exchange mass spectrometry experiment is the analysis of protein and peptide mass spectra to yield information about deuterium incorporation. The processing of data that are produced includes the identification of each peptic peptide to create a master table/array of peptide sequence, retention time and retention time range, mass range, and undeuterated mass. The amount of deuterium incorporated into each of the peptides in this array must then be determined. Various software platforms have been developed in order to perform this specific type of data analysis. We describe the fundamental parameters to be considered at each step along the way and how data processing, either by an individual or by software, must approach the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chowdhury SK, Katta V, Chait BT (1990) Probing conformational-changes in proteins by mass-spectrometry. J Am Chem Soc 112(24):9012–9013

    Article  CAS  Google Scholar 

  2. Katta V, Chait BT (1991) Conformational-changes in proteins probed by hydrogen-exchange electrospray-ionization mass-spectrometry. Rapid Commun Mass Sp 5(4):214–217

    Article  CAS  Google Scholar 

  3. Smith DL, Deng YZ, Zhang ZQ (1997) Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom 32(2):135–146

    Article  PubMed  CAS  Google Scholar 

  4. Hoofnagle AN, Resing KA, Ahn NG (2003) Protein analysis by hydrogen exchange mass spectrometry. Annu Rev Biophys Biomol Struct 32:1–25

    Article  PubMed  CAS  Google Scholar 

  5. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25(1):158–170

    Article  PubMed  CAS  Google Scholar 

  6. Morgan CR, Engen JR (2009) Investigating solution-phase protein structure and dynamics by hydrogen exchange mass spectrometry. Curr Protoc Protein Sci Chapter 17:Unit 17.6.1–17

    Google Scholar 

  7. Konermann L, Pan JX, Liu YH (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40(3):1224–1234

    Article  PubMed  CAS  Google Scholar 

  8. Hvidt A, Nielsen SO (1966) Hydrogen exchange in proteins. Adv Protein Chem 21:287–386

    Article  PubMed  CAS  Google Scholar 

  9. Englander SW, Downer NW, Teitelbaum H (1972) Hydrogen exchange. Annu Rev Biochem 41:903–924

    Article  PubMed  CAS  Google Scholar 

  10. Zhang ZQ, Smith DL (1993) Determination of amide hydrogen-exchange by mass-spectrometry—a New tool for protein-structure elucidation. Protein Sci 2(4):522–531

    Article  PubMed  CAS  Google Scholar 

  11. Engen JR (2003) Analysis of protein complexes with hydrogen exchange and mass spectrometry. Analyst 128(6):623–628

    Article  PubMed  CAS  Google Scholar 

  12. Brier S, Lemaire D, DeBonis S et al (2006) Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. J Mol Biol 360(2):360–376

    Article  PubMed  CAS  Google Scholar 

  13. Iacob RE, Engen JR (2012) Hydrogen exchange mass spectrometry: are we out of the quicksand? J Am Soc Mass Spectrom 23(6):1003–1010

    Article  PubMed  CAS  Google Scholar 

  14. Weis DD, Engen JR, Kass IJ (2006) Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J Am Soc Mass Spectrom 17(12):1700–1703

    Article  PubMed  CAS  Google Scholar 

  15. Miller DE, Prasannan CB, Villar MT et al (2012) HDXFinder: automated analysis and data reporting of deuterium/hydrogen exchange mass spectrometry. J Am Soc Mass Spectrom 23(2):425–429

    Article  PubMed  CAS  Google Scholar 

  16. Slysz GW, Baker CA, Bozsa BM et al (2009) Hydra: software for tailored processing of H/D exchange data from MS or tandem MS analyses. BMC Bioinformatics 10:1–14

    Article  Google Scholar 

  17. Lou X, Kirchner M, Renard BY et al (2010) Deuteration distribution estimation with improved sequence coverage for HX/MS experiments. Bioinformatics 26(12):1535–1541

    Article  PubMed  CAS  Google Scholar 

  18. Kreshuk A, Stankiewicz M, Lou XH et al (2011) Automated detection and analysis of bimodal isotope peak distributions in H/D exchange mass spectrometry using HeXicon. Int J Mass Spectrom 302(1–3):125–131

    CAS  Google Scholar 

  19. Palmblad M, Buijs J, Hakansson P (2001) Automatic analysis of hydrogen/deuterium exchange mass spectra of peptides and proteins using calculations of isotopic distributions. J Am Soc Mass Spectrom 12(11):1153–1162

    Article  PubMed  CAS  Google Scholar 

  20. Kavan D, Man P (2011) MSTools-Web based application for visualization and presentation of HXMS data. Int J Mass Spectrom 302(1–3):53–58

    CAS  Google Scholar 

  21. Pascal BD, Chalmers MJ, Busby SA et al (2009) HD desktop: an integrated platform for the analysis and visualization of H/D exchange data. J Am Soc Mass Spectrom 20(4):601–610

    Article  PubMed  CAS  Google Scholar 

  22. Pascal BD, Chalmers MJ, Busby SA et al (2007) The deuterator: software for the determination of backbone amide deuterium levels from H/D exchange MS data. BMC Bioinformatics 8:156

    Article  PubMed  CAS  Google Scholar 

  23. Liu SM, Liu LT, Uzuner U et al (2011) HDX-analyzer: a novel package for statistical analysis of protein structure dynamics. BMC Bioinformatics 12(Supp 1):S43

    Article  PubMed  Google Scholar 

  24. Hamuro Y, Coales SJ, Southern MR et al (2003) Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. J Biomol Tech 14(3):171–182

    PubMed  Google Scholar 

  25. Wei H, Ahn J, Yu YQ et al (2012) Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation. J Am Soc Mass Spectrom 23(3):498–504

    Article  PubMed  CAS  Google Scholar 

  26. Wales TE, Fadgen KE, Gerhardt GC et al (2008) High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem 80(17):6815–6820

    Article  PubMed  CAS  Google Scholar 

  27. Engen JR, Smith DL (2000) Investigating the higher order structure of proteins. Hydrogen exchange, proteolytic fragmentation, and mass spectrometry. Methods Mol Biol 146:95–112

    PubMed  CAS  Google Scholar 

  28. Tiyanont K, Wales TE, Aste-Amezaga M et al (2011) Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure 19(4):546–554

    Article  PubMed  CAS  Google Scholar 

  29. Ehring H (1999) Hydrogen exchange electrospray ionization mass spectrometry studies of structural features of proteins and protein/protein interactions. Anal Biochem 267(2):252–259

    Article  PubMed  CAS  Google Scholar 

  30. Woods VL Jr., (2001) Methods for the high-resolution identification of solvent-accessible amide hydrogens in polypeptides or proteins and for characterization of the fine structure of protein binding sites., in 2001: U.S. Patent. 6,291,189

    Google Scholar 

  31. Cravello L, Lascoux D, Forest E (2003) Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun Mass Spectrom 17(21):2387–2393

    Article  PubMed  CAS  Google Scholar 

  32. Wang L, Pan H, Smith DL (2002) Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Mol Cell Proteomics 1(2):132–138

    Article  PubMed  CAS  Google Scholar 

  33. Johnson RS, Walsh KA (1994) Mass-spectrometric measurement of protein amide hydrogen-exchange rates of Apo-myoglobin and holo-myoglobin. Protein Sci 3(12):2411–2418

    Article  PubMed  CAS  Google Scholar 

  34. Wu Y, Engen JR, Hobbins WB (2006) Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom 17(2):163–167

    Article  PubMed  CAS  Google Scholar 

  35. Mandell JG, Falick AM, Komives EA (1998) Identification of protein-protein interfaces by decreased amide proton solvent accessibility. Proc Natl Acad Sci USA 95(25):14705–14710

    Article  PubMed  CAS  Google Scholar 

  36. Dharmasiri K, Smith DL (1996) Mass spectrometric determination of isotopic exchange rates of amide hydrogens located on the surfaces of proteins. Anal Chem 68(14):2340–2344

    Article  PubMed  CAS  Google Scholar 

  37. Rosa JJ, Richards FM (1979) An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol 133(3):399–416

    Article  PubMed  CAS  Google Scholar 

  38. Englander JJ, Rogero JR, Englander SW (1985) Protein hydrogen exchange studied by the fragment separation method. Anal Biochem 147(1):234–244

    Article  PubMed  CAS  Google Scholar 

  39. Marcsisin SR, Engen JR (2010) Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 397(3):967–972

    Article  PubMed  CAS  Google Scholar 

  40. Weis DD, Wales TE, Engen JR et al (2006) Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J Am Soc Mass Spectrom 17(11):1498–1509

    Article  PubMed  CAS  Google Scholar 

  41. Kipping M, Schierhorn A (2003) Improving hydrogen/deuterium exchange mass spectrometry by reduction of the back-exchange effect. J Mass Spectrom 38(3):271–276

    Article  PubMed  CAS  Google Scholar 

  42. Hoofnagle AN, Resing KA, Ahn NG (2004) Practical methods for deuterium exchange/mass spectrometry. Methods Mol Biol 250:283–298

    PubMed  CAS  Google Scholar 

  43. Englander SW, Kallenbach NR (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16(4):521–655

    Article  PubMed  CAS  Google Scholar 

  44. Miranker A, Robinson CV, Radford SE et al (1993) Detection of transient protein-folding populations by mass-spectrometry. Science 262(5135):896–900

    Article  PubMed  CAS  Google Scholar 

  45. Fruton JS, Bergmann M (1938) The specificity of pepsin action. Science 87(2268):557

    Article  PubMed  CAS  Google Scholar 

  46. Geromanos SJ, Vissers JP, Silva JC et al (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6):1683–1695

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Z, Marshall AG (1998) A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 9(3):225–233

    Article  PubMed  CAS  Google Scholar 

  48. Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100(6):2071–2086

    Article  PubMed  CAS  Google Scholar 

  49. Tsutsui Y, Liu L, Gershenson A et al (2006) The conformational dynamics of a metastable serpin studied by hydrogen exchange and mass spectrometry. Biochemistry 45(21):6561–6569

    Article  PubMed  CAS  Google Scholar 

  50. Zheng X, Wintrode PL, Chance MR (2008) Complementary structural mass spectrometry techniques reveal local dynamics in functionally important regions of a metastable serpin. Structure 16(1):38–51

    Article  PubMed  Google Scholar 

  51. Busenlehner LS, Armstrong RN (2005) Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch Biochem Biophys 433(1):34–46

    Article  PubMed  CAS  Google Scholar 

  52. Tsutsumi S, Mollapour M, Prodromou C et al (2012) Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. P Natl Acad Sci USA 109(8):2937–2942

    Article  CAS  Google Scholar 

  53. Street TO, Lavery LA, Verba KA et al (2012) Cross-Monomer Substrate Contacts Reposition the Hsp90 N-Terminal Domain and Prime the Chaperone Activity. J Mol Biol 415(1):3–15

    Article  PubMed  CAS  Google Scholar 

  54. Kazazic S, Zhang HM, Schaub TM et al (2010) Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 21(4):550–558

    Article  PubMed  CAS  Google Scholar 

  55. Zhang Z, Li W, Logan TM et al (1997) Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. Protein Sci 6(10):2203–2217

    Article  PubMed  CAS  Google Scholar 

  56. Iacob RE, Murphy JP 3rd, Engen JR (2008) Ion mobility adds an additional dimension to mass spectrometric analysis of solution-phase hydrogen/deuterium exchange. Rapid Commun Mass Spectrom 22(18):2898–2904

    Article  PubMed  CAS  Google Scholar 

  57. Demmers JA, Rijkers DT, Haverkamp J et al (2002) Factors affecting gas-phase deuterium scrambling in peptide ions and their implications for protein structure determination. J Am Chem Soc 124(37):11191–11198

    Article  PubMed  CAS  Google Scholar 

  58. Jorgensen TJ, Gardsvoll H, Ploug M et al (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J Am Chem Soc 127(8):2785–2793

    Article  PubMed  CAS  Google Scholar 

  59. Jorgensen TJ, Bache N, Roepstorff P et al (2005) Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides. Mol Cell Proteomics 4(12):1910–1919

    Article  PubMed  Google Scholar 

  60. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266

    Article  CAS  Google Scholar 

  61. Rand KD, Adams CM, Zubarev RA et al (2008) Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J Am Chem Soc 130(4):1341–1349

    Article  PubMed  CAS  Google Scholar 

  62. Zehl M, Rand KD, Jensen ON et al (2008) Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J Am Chem Soc 130(51):17453–17459

    Article  PubMed  CAS  Google Scholar 

  63. Fang J, Rand KD, Beuning PJ et al (2011) False EX1 signatures caused by sample carryover during HX MS analyses. Int J Mass Spectrom 302(1–3):19–25

    PubMed  CAS  Google Scholar 

  64. Bai Y, Milne JS, Mayne L et al (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17(1):75–86

    Article  PubMed  CAS  Google Scholar 

  65. Connelly GP, Bai Y, Jeng MF et al (1993) Isotope effects in peptide group hydrogen exchange. Proteins 17(1):87–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work with HX-MS is supported by the NIH (R01-GM086507) and the Waters Corporation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wales, T.E., Eggertson, M.J., Engen, J.R. (2013). Considerations in the Analysis of Hydrogen Exchange Mass Spectrometry Data. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 1007. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-392-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-392-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-391-6

  • Online ISBN: 978-1-62703-392-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics