Skip to main content

EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Electron paramagnetic resonance (EPR) spectroscopy of spin-labeled membrane proteins is a valuable biophysical technique to study structural details and conformational transitions of proteins close to their physiological environment, e.g., in liposomes, membrane bilayers, and nanodiscs. Unlike in nuclear magnetic resonance spectroscopy, having only one or few specific side chains labeled at a time with paramagnetic probes makes the size of the object under investigation irrelevant in terms of technique sensitivity. As a drawback, extensive site-directed mutagenesis is required in order to analyze the properties of the protein under investigation. EPR can provide detailed information on side chain dynamics of large membrane proteins or protein complexes embedded in membranes with an exquisite sensitivity for flexible regions and on water accessibility profiles across the membrane bilayer. Moreover, distances between the two spin-labeled side chains in membrane proteins can be detected with high precision in the 1.5–6 nm range at cryogenic temperatures. The application of EPR to membrane proteins still presents some challenges in terms of sample preparation, sensitivity, and data interpretation; thus no ready-to-go methodological recipes can be given. However this chapter describes the state of the art in the application of nitroxide-based site-directed spin labeling EPR to membrane proteins, with specific focus on the different types of information which can be obtained with continuous wave and pulsed techniques and on the challenges in sample preparation and data analysis for functional and structural membrane protein studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berliner LJ, Reuben J (eds) (1989) Spin labeling theory and applications. Plenum Press, New York

    Google Scholar 

  2. Azarkh M, Okle O, Eyring P et al (2011) Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J Magn Reson 212:450–454

    Article  PubMed  CAS  Google Scholar 

  3. Krstic I, Hansel R, Romainczyk O et al (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 50:5070–5074

    Article  PubMed  CAS  Google Scholar 

  4. Fleissner MR, Bridges MD, Brooks EK et al (2011) Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proc Natl Acad Sci USA 108:16241–16246

    Article  PubMed  CAS  Google Scholar 

  5. Cooke JA, Brown LJ (2011) Distance measurements by continuous wave EPR spectroscopy to monitor protein folding. Methods Mol Biol 752:73–96

    Article  PubMed  CAS  Google Scholar 

  6. Hubbell WL, Mchaourab HS, Altenbach C et al (1996) Watching proteins move using site-directed spin labeling. Structure 4:779–783

    Article  PubMed  CAS  Google Scholar 

  7. Bleicken S, Classen M, Padmavathi PV et al (2010) Molecular details of Bax activation, oligomerization, and membrane insertion. J Biol Chem 285:6636–6647

    Article  PubMed  CAS  Google Scholar 

  8. Altenbach C, Greenhalgh DA, Khorana HG et al (1994) A collision gradient-method to determine the immersion depth of nitroxides in lipid bilayers – application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci USA 91:1667–1671

    Article  PubMed  CAS  Google Scholar 

  9. Altenbach C, Froncisz W, Hemker R et al (2005) Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J 89:2103–2112

    Article  PubMed  CAS  Google Scholar 

  10. Oh KJ, Altenbach C, Collier RJ et al (2000) Site-directed spin labeling of proteins. Applications to diphtheria toxin. Methods Mol Biol 145:147–169

    PubMed  CAS  Google Scholar 

  11. Subczynski WK, Widomska J, Wisniewska A et al (2007) Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains. Methods Mol Biol 398:143–157

    Article  PubMed  CAS  Google Scholar 

  12. Pyka J, Ilnicki J, Altenbach C et al (2005) Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys J 89:2059–2068

    Article  PubMed  CAS  Google Scholar 

  13. Kurad D, Jeschke G, Marsh D (2003) Lipid membrane polarity profiles by high-field EPR. Biophys J 85:1025–1033

    Article  PubMed  CAS  Google Scholar 

  14. Plato M, Steinhoff HJ, Wegener C et al (2002) Molecular orbital study of polarity and hydrogen bonding effects on the g and hyperfine tensors of site directed NO spin labelled bacteriorhodopsin. Mol Phys 100:3711–3721

    Article  CAS  Google Scholar 

  15. Steinhoff HJ, Savitsky A, Wegener C et al (2000) High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim Biophys Acta Bioenerg 1457:253–262

    Article  CAS  Google Scholar 

  16. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  PubMed  CAS  Google Scholar 

  17. Bordignon E, Brutlach H, Urban L et al (2010) Heterogeneity in the nitroxide micro-environment: polarity and proticity effects in spin-labeled proteins studied by multi-frequency EPR. Appl Magn Reson 37:391–403

    Article  Google Scholar 

  18. Volkov A, Dockter C, Bund T et al (2009) Pulsed EPR determination of water accessibility to spin-labeled amino acid residues in LHCIIb. Biophys J 96:1124–1141

    Article  PubMed  CAS  Google Scholar 

  19. Berliner LJ, Eaton SS, Eaton GR (eds) (2000) Distance measurements in biological systems by EPR. Kluwer Academic/Plenum, New York

    Google Scholar 

  20. Steinhoff HJ, Radzwill N, Thevis W et al (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the x-ray structure. Biophys J 73:3287–3298

    Article  PubMed  CAS  Google Scholar 

  21. Altenbach C, Oh KJ, Trabanino RJ et al (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40:15471–15482

    Article  PubMed  CAS  Google Scholar 

  22. Banham JE, Baker CM, Ceola S et al (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191:202–218

    Article  PubMed  CAS  Google Scholar 

  23. Grote M, Bordignon E, Polyhach Y et al (2008) A comparative electron paramagnetic resonance study of the nucleotide-binding domains’ catalytic cycle in the assembled maltose ATP-binding cassette importer. Biophys J 95:2924–2938

    Article  PubMed  CAS  Google Scholar 

  24. Pannier M, Veit S, Godt A et al (2000) Dead-time free measurement of dipole–dipole interactions between electron spins. J Magn Reson 142:331–340

    Article  PubMed  CAS  Google Scholar 

  25. Polyhach Y, Bordignon E, Tschaggelar R et al (2012) High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies. Phys Chem Chem Phys 14:10762–10773

    Google Scholar 

  26. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9:1895–1910

    Article  PubMed  CAS  Google Scholar 

  27. Jeschke G, Chechik V, Ionita P et al (2006) DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  28. Polyhach Y, Bordignon E, Jeschke G (2011) Rotamer libraries of spin labelled cysteines for protein studies. Phys Chem Chem Phys 13:2356–2366

    Article  PubMed  CAS  Google Scholar 

  29. Hvorup RN, Goetz BA, Niederer M et al (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387–1390

    Article  PubMed  CAS  Google Scholar 

  30. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    Article  PubMed  CAS  Google Scholar 

  31. Pinkett HW, Lee AT, Lum P et al (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315:373–377

    Article  PubMed  CAS  Google Scholar 

  32. Joseph B, Jeschke G, Goetz BA et al (2011) Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J Biol Chem 286:41008–41017

    Article  PubMed  CAS  Google Scholar 

  33. Korkhov VM, Mireku SA, Locher KP (2012) Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490:367–372

    Google Scholar 

  34. Hilger D, Polyhach Y, Jung H et al (2009) Backbone structure of transmembrane domain IX of the Na+/proline transporter PutP of Escherichia coli. Biophys J 96:217–225

    Article  PubMed  CAS  Google Scholar 

  35. Raba M, Baumgartner T, Hilger D et al (2008) Function of transmembrane domain IX in the Na+/proline transporter PutP. J Mol Biol 382:884–893

    Article  PubMed  CAS  Google Scholar 

  36. Fleissner MR, Brustad EM, Kálai T et al (2009) Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc Natl Acad Sci 106:21637–21642

    Article  PubMed  CAS  Google Scholar 

  37. Toniolo C, Valente E, Formaggio F et al (1995) Synthesis and conformational studies of peptides containing TOAC, a spin-labelled Cα, α-disubstituted glycine. J Pept Sci 1:45–57

    Article  PubMed  CAS  Google Scholar 

  38. Jeschke G, Sajid M, Schulte M et al (2009) Three-spin correlations in double electron–electron resonance. Phys Chem Chem Phys 11:6580–6591

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Bordignon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bordignon, E., Polyhach, Y. (2013). EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics