Skip to main content

Analytical Technologies for Integrated Single-Cell Analysis of Human Immune Responses

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 853))

Abstract

The immune system is a network of cells in which the constitutive members interact through dense and sometimes overlapping connections. The extreme complexity of this network poses a significant challenge for monitoring pathological conditions (e.g., food allergies, autoimmunity, and other chronic inflammatory diseases) and for discovering robust signatures of immunological responses that correlate with or predict the efficacy of interventions. The diversity among immune cells found in clinical samples (variations in cellular functions, lineages, and clonotypic breadth) requires approaches for monitoring immune responses with single-cell resolution.

In this chapter, we present an engineering approach for integrated single-cell analysis that uses interchangeable modular operations to provide a comprehensive characterization of the phenotypic, functional, and genetic variations for individual cells. We focus on the use of microfabricated devices to isolate and interrogate single cells, and on the analytical components that enable subsequent detection, correlation, and interpretation of multidimensional sets of data. We discuss specific challenges and opportunities in the realization of this concept, and review two examples where it has been implemented. The presented approach should provide a basis for the design and implementation of nonconventional bioanalytical processes for studying specific responses of an immune system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frankenstein, Z., Alon, U., and Cohen, I. R. (2006) The immune-body cytokine network defines a social architecture of cell interactions, Biol Direct 1, 32.

    Article  PubMed  Google Scholar 

  2. Fahey, J. L., Taylor, J. M. G., Detels, R., Hofmann, B., Melmed, R., Nishanian, P., and Giorgi, J. V. (1990) The Prognostic Value of Cellular and Serologic Markers in Infection with Human Immunodeficiency Virus Type-1, New Engl J Med 322, 166–172.

    Article  PubMed  CAS  Google Scholar 

  3. Shattock, R. J., Haynes, B. F., Pulendran, B., Flores, J., and Esparza, J. (2008) Improving defences at the portal of HIV entry: mucosal and innate immunity, PLoS Med 5, e81.

    Article  PubMed  Google Scholar 

  4. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., and Sorger, P. K. (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis, Nature 459, 428-U144.

    Article  PubMed  CAS  Google Scholar 

  5. Jung, T., Schauer, U., Heusser, C., Neumann, C., and Rieger, C. (1993) Detection of intracellular cytokines by flow cytometry, J Immunol Methods 159, 197–207.

    Article  PubMed  CAS  Google Scholar 

  6. Czerkinsky, C. C., Nilsson, L. A., Nygren, H., Ouchterlony, O., and Tarkowski, A. (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells, J Immunol Methods 65, 109–121.

    Article  PubMed  CAS  Google Scholar 

  7. Querec, T. D., Akondy, R. S., Lee, E. K., Cao, W., Nakaya, H. I., Teuwen, D., Pirani, A., Gernert, K., Deng, J., Marzolf, B., Kennedy, K., Wu, H., Bennouna, S., Oluoch, H., Miller, J., Vencio, R. Z., Mulligan, M., Aderem, A., Ahmed, R., and Pulendran, B. (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans, Nat Immunol 10, 116–125.

    Article  PubMed  CAS  Google Scholar 

  8. Gaucher, D., Therrien, R., Kettaf, N., Angermann, B. R., Boucher, G., Filali-Mouhim, A., Moser, J. M., Mehta, R. S., Drake, D. R., Castro, E., Akondy, R., Rinfret, A., Yassine-Diab, B., Said, E. A., Chouikh, Y., Cameron, M. J., Clum, R., Kelvin, D., Somogyi, R., Greller, L. D., Balderas, R. S., Wilkinson, P., Pantaleo, G., Tartaglia, J., Haddad, E. K., and Sekaly, R. P. (2008) Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses, J Exp Med 205, 3119–3131.

    Article  PubMed  CAS  Google Scholar 

  9. Arora, A., Simone, G., Salieb-Beugelaar, G. B., Kim, J. T., and Manz, A. (2010) Latest Developments in Micro Total Analysis Systems, Anal Chem 82, 4830–4847.

    Article  PubMed  CAS  Google Scholar 

  10. Chin, C. D., Linder, V., and Sia, S. K. (2007) Lab-on-a-chip devices for global health: Past studies and future opportunities, Lab Chip 7, 41–57.

    Article  PubMed  CAS  Google Scholar 

  11. Love, J. C. (2010) Integrated Process Design for Single-Cell Analytical Technologies, Aiche J 56, 2496–2502.

    Article  CAS  Google Scholar 

  12. Fiorini, G. S., and Chiu, D. T. (2005) Disposable microfluidic devices: fabrication, function, and application, Biotechniques 38, 429–446.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor, R. J., Falconnet, D., Niemisto, A., Ramsey, S. A., Prinz, S., Shmulevich, I., Galitski, T., and Hansen, C. L. (2009) Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform, P Natl Acad Sci USA 106, 3758–3763.

    Article  CAS  Google Scholar 

  14. Thorsen, T., Maerkl, S. J., and Quake, S. R. (2002) Microfluidic large-scale integration, Science 298, 580–584.

    Article  PubMed  CAS  Google Scholar 

  15. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A., and Quake, S. R. (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113–116.

    Article  PubMed  CAS  Google Scholar 

  16. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., Rothberg, J. M., Link, D. R., Perrimon, N., and Samuels, M. L. (2009) Droplet microfluidic technology for single-cell high-throughput screening, P Natl Acad Sci USA 106, 14195–14200.

    Article  CAS  Google Scholar 

  17. Clausell-Tormos, J., Lieber, D., Baret, J. C., El-Harrak, A., Miller, O. J., Frenz, L., Blouwolff, J., Humphry, K. J., Koster, S., Duan, H., Holtze, C., Weitz, D. A., Griffiths, A. D., and Merten, C. A. (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms (vol 15, pg 427, 2008), Chem Biol 15, 875–875.

    Article  CAS  Google Scholar 

  18. Edd, J. F., Di Carlo, D., Humphry, K. J., Koster, S., Irimia, D., Weitz, D. A., and Toner, M. (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab Chip 8, 1262–1264.

    Article  PubMed  CAS  Google Scholar 

  19. He, M. Y., Edgar, J. S., Jeffries, G. D. M., Lorenz, R. M., Shelby, J. P., and Chiu, D. T. (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Anal Chem 77, 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  20. Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Marquez, M., Klibanov, A. M., Griffiths, A. D., and Weitz, D. A. (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proc Natl Acad Sci USA 107, 4004–4009.

    Article  PubMed  CAS  Google Scholar 

  21. Baret, J. C., Miller, O. J., Taly, V., Ryckelynck, M., El-Harrak, A., Frenz, L., Rick, C., Samuels, M. L., Hutchison, J. B., Agresti, J. J., Link, D. R., Weitz, D. A., and Griffiths, A. D. (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity, Lab Chip 9, 1850–1858.

    Article  PubMed  CAS  Google Scholar 

  22. Di Carlo, D., Aghdam, N., and Lee, L. P. (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays, Anal Chem 78, 4925–4930.

    Article  PubMed  Google Scholar 

  23. Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R., and Voldman, J. (2009) Microfluidic control of cell pairing and fusion, Nature Methods 6, 147–152.

    Article  PubMed  CAS  Google Scholar 

  24. Love, J. C., Ronan, J. L., Grotenbreg, G. M., van der Veen, A. G., and Ploegh, H. L. (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies, Nat Biotechnol 24, 703–707.

    Article  PubMed  CAS  Google Scholar 

  25. Rettig, J. R., and Folch, A. (2005) Large-scale single-cell trapping and imaging using microwell arrays, Anal Chem 77, 5628–5634.

    Article  PubMed  CAS  Google Scholar 

  26. Revzin, A., Sekine, K., Sin, A., Tompkins, R. G., and Toner, M. (2005) Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes, Lab Chip 5, 30–37.

    Article  PubMed  CAS  Google Scholar 

  27. Choi, J. H., Ogunniyi, A. O., Du, M. D., Du, M. N., Kretschmann, M., Eberhardt, J., and Love, J. C. (2010) Development and Optimization of a Process for Automated Recovery of Single Cells Identified by Microengraving, Biotechnol Progr 26, 888–895.

    Article  CAS  Google Scholar 

  28. Jin, A., Ozawa, T., Tajiri, K., Obata, T., Kondo, S., Kinoshita, K., Kadowaki, S., Takahashi, K., Sugiyama, T., Kishi, H., and Muraguchi, A. (2009) A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood, Nature Medicine 15, 1088-U1146.

    Article  PubMed  CAS  Google Scholar 

  29. Di Carlo, D., and Lee, L. P. (2006) Dynamic single-cell analysis for quantitative biology, Anal Chem 78, 7918–7925.

    Article  PubMed  Google Scholar 

  30. Park, J. Y., Morgan, M., Sachs, A. N., Samorezov, J., Teller, R., Shen, Y., Pienta, K. J., and Takayama, S. (2010) Single cell trapping in larger microwells capable of supporting cell spreading and proliferation, Microfluid Nanofluid 8, 263–268.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, W. C., Rigante, S., Pisano, A. P., and Kuypers, F. A. (2010) Large-scale arrays of picolitre chambers for single-cell analysis of large cell populations, Lab Chip 10, 2952–2958.

    Article  PubMed  CAS  Google Scholar 

  32. Park, M. C., Hur, J. Y., Cho, H. S., Park, S. H., and Suh, K. Y. (2011) High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging, Lab Chip 11, 79–86.

    Article  PubMed  CAS  Google Scholar 

  33. Eriksson, E., Sott, K., Lundqvist, F., Sveningsson, M., Scrimgeour, J., Hanstorp, D., Goksor, M., and Graneli, A. (2010) A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning, Lab Chip 10, 617–625.

    Article  PubMed  CAS  Google Scholar 

  34. Lu, Z., Moraes, C., Ye, G., Simmons, C. A., and Sun, Y. (2010) Single Cell Deposition and Patterning with a Robotic System, PLoS One 5, -.

    Google Scholar 

  35. Zola, H., Swart, B., Banham, A., Barry, S., Beare, A., Bensussan, A., Boumsell, L., Buckley, C. D., Buhring, H. J., Clark, G., Engel, P., Fox, D., Jin, B. Q., Macardle, P. J., Malavasi, F., Mason, D., Stockinger, H., and Yang, X. F. (2007) CD molecules 2006 - Human cell differentiation molecules, J Immunol Methods 319, 1–5.

    Article  PubMed  CAS  Google Scholar 

  36. Perfetto, S. P., Chattopadhyay, P. K., and Roederer, M. (2004) Innovation - Seventeen-colour flow cytometry: unravelling the immune system, Nat Rev Immunol 4, 648-U645.

    Article  PubMed  CAS  Google Scholar 

  37. Sitton, G., and Srienc, F. (2009) Flow Cytometry Without Alignment of Collection Optics, Cytom Part A 75A, 990–998.

    Article  Google Scholar 

  38. Song, Q., Han, Q., Bradshaw, E. M., Kent, S. C., Raddassi, K., Nilsson, B., Nepom, G. T., Hafler, D. A., and Love, J. C. (2010) On-Chip Activation and Subsequent Detection of Individual Antigen-Specific T Cells, Anal Chem 82, 473–477.

    Article  PubMed  CAS  Google Scholar 

  39. Harnett, M. M. (2007) Laser scanning cytometry: understanding the immune system in situ, Nat Rev Immunol 7, 897–904.

    Article  PubMed  CAS  Google Scholar 

  40. Ogunniyi, A. O., Story, C. M., Papa, E., Guillen, E., and Love, J. C. (2009) Screening individual hybridomas by microengraving to discover monoclonal antibodies, Nat Protoc 4, 767–782.

    Article  PubMed  CAS  Google Scholar 

  41. Bandura, D. R., Baranov, V. I., Ornatsky, O. I., Antonov, A., Kinach, R., Lou, X. D., Pavlov, S., Vorobiev, S., Dick, J. E., and Tanner, S. D. (2009) Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry, Anal Chem 81, 6813–6822.

    Article  PubMed  CAS  Google Scholar 

  42. Tanner, S. D., Bandura, D. R., Ornatsky, O., Baranov, V. I., Nitz, M., and Winnik, M. A. (2008) Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay, Pure Appl Chem 80, 2627–2641.

    Article  CAS  Google Scholar 

  43. Jung, T., Schauer, U., Heusser, C., Neumann, C., and Rieger, C. (1993) Detection of Intracellular Cytokines by Flow-Cytometry, J Immunol Methods 159, 197–207.

    Article  PubMed  CAS  Google Scholar 

  44. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005) Causal protein-signaling networks derived from multiparameter single-cell data, Science 308, 523–529.

    Article  PubMed  CAS  Google Scholar 

  45. Assenmacher, M., Lohning, M., and Radbruch, A. (2002) Detection and isolation of cytokine secreting cells using the cytometric cytokine secretion assay, Curr Protoc Immunol Chapter 6, Unit 6 27.

    Google Scholar 

  46. Streeck, H., Frahm, N., and Walker, B. D. (2009) The role of IFN-gamma Elispot assay in HIV vaccine research, Nat Protoc 4, 461–469.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, H., Stybayeva, G., Silangcruz, J., Yan, J., Ramanculov, E., Dandekar, S., George, M. D., and Revzin, A. (2009) Detecting Cytokine Release from Single T-cells, Anal Chem 81, 8150–8156.

    Article  PubMed  CAS  Google Scholar 

  48. Han, Q., Bradshaw, E. M., Nilsson, B., Hafler, D. A., and Love, J. C. (2010) Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving, Lab Chip 10, 1391–1400.

    Article  PubMed  CAS  Google Scholar 

  49. Story, C. M., Papa, E., Hu, C. C. A., Ronan, J. L., Herlihy, K., Ploegh, H. L., and Love, J. C. (2008) Profiling antibody responses by multiparametric analysis of primary B cells, P Natl Acad Sci USA 105, 17902–17907.

    Article  CAS  Google Scholar 

  50. Love, K. R., Panagiotou, V., Jiang, B., Stadheim, T. A., and Love, J. C. (2010) Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically, Biotechnol Bioeng 106, 319–325.

    PubMed  Google Scholar 

  51. Nagorsen, D., Marincola, F. M., Hodgkin, P., Hawkins, E., Hasbold, J., Gett, A., Deenick, E., Todd, H., and Hommel, M. (2005) Monitoring T Cell Proliferation, In Analyzing T Cell Responses, pp 123–141, Springer Netherlands.

    Google Scholar 

  52. Rothaeusler, K., and Baumgarth, N. (2007) Assessment of cell proliferation by 5-bromodeoxyuridine (BrdU) labeling for multicolor flow cytometry, Curr Protoc Cytom Chapter 7, 7.31.31-37.31.31.

    Google Scholar 

  53. Yu, Y., Arora, A., Min, W., Roifman, C. M., and Grunebaum, E. (2009) EdU incorporation is an alternative non-radioactive assay to ((3)H)thymidine uptake for in vitro measurement of mice T-cell proliferations, J Immunol Methods 350, 29–35.

    Article  PubMed  CAS  Google Scholar 

  54. Quah, B. J., Warren, H. S., and Parish, C. R. (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester, Nat Protoc 2, 2049–2056.

    Article  PubMed  CAS  Google Scholar 

  55. Hawkins, E. D., Markham, J. F., McGuinness, L. P., and Hodgkin, P. D. (2009) A single-cell pedigree analysis of alternative stochastic lymphocyte fates, Proc Natl Acad Sci USA 106, 13457–13462.

    Article  PubMed  CAS  Google Scholar 

  56. Albrecht, D. R., Underhill, G. H., Resnikoff, J., Mendelson, A., Bhatia, S. N., and Shah, J. V. (2010) Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics, Integr Biol (Camb) 2, 278–287.

    Article  CAS  Google Scholar 

  57. Rowat, A. C., Bird, J. C., Agresti, J. J., Rando, O. J., and Weitz, D. A. (2009) Tracking lineages of single cells in lines using a microfluidic device, P Natl Acad Sci USA 106, 18149–18154.

    Article  CAS  Google Scholar 

  58. Russell, J. H., and Ley, T. J. (2002) Lymphocyte-mediated cytotoxicity, Annu Rev Immunol 20, 323–370.

    Article  PubMed  CAS  Google Scholar 

  59. Aubry, J. P., Blaecke, A., Lecoanet-Henchoz, S., Jeannin, P., Herbault, N., Caron, G., Moine, V., and Bonnefoy, J. Y. (1999) Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity, Cytometry 37, 197–204.

    Article  PubMed  CAS  Google Scholar 

  60. Kim, G. G., Donnenberg, V. S., Donnenberg, A. D., mGooding, W., and Whiteside, T. L. (2007) A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay, J Immunol Methods 325, 51–66.

    Article  PubMed  CAS  Google Scholar 

  61. Wlodkowic, D., Skommer, J., McGuinness, D., Faley, S., Kolch, W., Darzynkiewicz, Z., and Cooper, J. M. (2009) Chip-based dynamic real-time quantification of drug-induced cytotoxicity in human tumor cells, Anal Chem 81, 6952–6959.

    Article  PubMed  CAS  Google Scholar 

  62. Liu, L., Chahroudi, A., Silvestri, G., Wernett, M. E., Kaiser, W. J., Safrit, J. T., Komoriya, A., Altman, J. D., Packard, B. Z., and Feinberg, M. B. (2002) Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates, Nat Med 8, 185–189.

    Article  PubMed  CAS  Google Scholar 

  63. Packard, B. Z., Telford, W. G., Komoriya, A., and Henkart, P. A. (2007) Granzyme B activity in target cells detects attack by cytotoxic lymphocytes, J Immunol 179, 3812–3820.

    PubMed  CAS  Google Scholar 

  64. Alter, G., Malenfant, J. M., and Altfeld, M. (2004) CD107a as a functional marker for the identification of natural killer cell activity, J Immunol Methods 294, 15–22.

    Article  PubMed  CAS  Google Scholar 

  65. Betts, M. R., Brenchley, J. M., Price, D. A., De Rosa, S. C., Douek, D. C., Roederer, M., and Koup, R. A. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation, J Immunol Methods 281, 65–78.

    Article  PubMed  CAS  Google Scholar 

  66. Hersperger, A. R., Makedonas, G., and Betts, M. R. (2008) Flow cytometric detection of perforin upregulation in human CD8 T cells, Cytometry A 73, 1050–1057.

    PubMed  Google Scholar 

  67. Zuber, B., Levitsky, V., Jonsson, G., Paulie, S., Samarina, A., Grundstrom, S., Metkar, S., Norell, H., Callender, G. G., Froelich, C., and Ahlborg, N. (2005) Detection of human perforin by ELISpot and ELISA: ex vivo identification of virus-specific cells, J Immunol Methods 302, 13–25.

    Article  PubMed  CAS  Google Scholar 

  68. Shafer-Weaver, K., Sayers, T., Strobl, S., Derby, E., Ulderich, T., Baseler, M., and Malyguine, A. (2003) The Granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity, J Transl Med 1, 14.

    Article  PubMed  Google Scholar 

  69. Bhat, R., and Watzl, C. (2007) Serial killing of tumor cells by human natural killer cells–enhancement by therapeutic antibodies, PLoS One 2, e326.

    Article  PubMed  Google Scholar 

  70. Jenkins, M. R., La Gruta, N. L., Doherty, P. C., Trapani, J. A., Turner, S. J., and Waterhouse, N. J. (2009) Visualizing CTL activity for different CD8+ effector T cells supports the idea that lower TCR/epitope avidity may be advantageous for target cell killing, Cell Death Differ 16, 537–542.

    Article  PubMed  CAS  Google Scholar 

  71. Faley, S., Seale, K., Hughey, J., Schaffer, D. K., VanCompernolle, S., McKinney, B., Baudenbacher, F., Unutmaz, D., and Wikswo, J. P. (2008) Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel, Lab Chip 8, 1700–1712.

    Article  PubMed  CAS  Google Scholar 

  72. Guldevall, K., Vanherberghen, B., Frisk, T., Hurtig, J., Christakou, A. E., Manneberg, O., Lindstrom, S., Andersson-Svahn, H., Wiklund, M., and Onfelt, B. (2010) Imaging immune surveillance of individual natural killer cells confined in microwell arrays, PLoS One 5, e15453.

    Article  PubMed  Google Scholar 

  73. Snyder, J. E., Bowers, W. J., Livingstone, A. M., Lee, F. E., Federoff, H. J., and Mosmann, T. R. (2003) Measuring the frequency of mouse and human cytotoxic T cells by the Lysispot assay: independent regulation of cytokine secretion and short-term killing, Nat Med 9, 231–235.

    Article  PubMed  CAS  Google Scholar 

  74. Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002) Stochastic gene expression in a single cell, Science 297, 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  75. Stahlberg, A., and Bengtsson, M. (2010) Single-cell gene expression profiling using reverse transcription quantitative real-time PCR, Methods 50, 282–288.

    Article  PubMed  CAS  Google Scholar 

  76. Marcus, J. S., Anderson, W. F., and Quake, S. R. (2006) Microfluidic single-cell mRNA isolation and analysis, Anal Chem 78, 3084–3089.

    Article  PubMed  CAS  Google Scholar 

  77. Gong, Y. A., Ogunniyi, A. O., and Love, J. C. (2010) Massively parallel detection of gene expression in single cells using subnanolitre wells, Lab Chip 10, 2334–2337.

    Article  PubMed  CAS  Google Scholar 

  78. Nakano, M., Nakai, N., Kurita, H., Komatsu, J., Takashima, K., Katsura, S., and Mizuno, A. (2005) Single-molecule reverse transcription polymerase chain reaction using water-in-oil emulsion, J Biosci Bioeng 99, 293–295.

    Article  PubMed  CAS  Google Scholar 

  79. Mardis, E. R. (2008) The impact of next-generation sequencing technology on genetics, Trends Genet 24, 133–141.

    Article  PubMed  CAS  Google Scholar 

  80. Petrovsky, N., and Harrison, L. C. (1995) Cytokine-based human whole blood assay for the detection of antigen-reactive T cells, J Immunol Methods 186, 37–46.

    Article  PubMed  CAS  Google Scholar 

  81. Helms, T., Boehm, B. O., Asaad, R. J., Trezza, R. P., Lehmann, P. V., and Tary-Lehmann, M. (2000) Direct visualization of cytokine-producing recall antigen-specific CD4 memory T cells in healthy individuals and HIV patients, J Immunol 164, 3723–3732.

    PubMed  CAS  Google Scholar 

  82. Guerkov, R. E., Targoni, O. S., Kreher, C. R., Boehm, B. O., Herrera, M. T., Tary-Lehmann, M., Lehmann, P. V., and Schwander, S. K. (2003) Detection of low-frequency antigen-specific IL-10-producing CD4(+) T cells via ELISPOT in PBMC: cognate vs. nonspecific production of the cytokine, J Immunol Methods 279, 111–121.

    Article  PubMed  CAS  Google Scholar 

  83. Zeng, Y., Novak, R., Shuga, J., Smith, M. T., and Mathies, R. A. (2010) High-performance single cell genetic analysis using microfluidic emulsion generator arrays, Anal Chem 82, 3183–3190.

    Article  PubMed  CAS  Google Scholar 

  84. Mlecnik, B., Sanchez-Cabo, F., Charoentong, P., Bindea, G., Pages, F., Berger, A., Galon, J., and Trajanoski, Z. (2010) Data integration and exploration for the identification of molecular mechanisms in tumor-immune cells interaction, BMC Genomics 11 Suppl 1, S7.

    Google Scholar 

  85. Gevaert, O., De Smet, F., Timmerman, D., Moreau, Y., and De Moor, B. (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks, Bioinformatics 22, e184–190.

    Article  PubMed  CAS  Google Scholar 

  86. Huang, S. S., and Fraenkel, E. (2009) Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks, Sci Signal 2, ra40.

    Google Scholar 

  87. Genser, B., Cooper, P. J., Yazdanbakhsh, M., Barreto, M. L., and Rodrigues, L. C. (2007) A guide to modern statistical analysis of immunological data, BMC Immunol 8, 27.

    Article  PubMed  Google Scholar 

  88. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J., Jr., Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P. O., and Staudt, L. M. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature 403, 503–511.

    Article  PubMed  CAS  Google Scholar 

  89. Berry, M. P., Graham, C. M., McNab, F. W., Xu, Z., Bloch, S. A., Oni, T., Wilkinson, K. A., Banchereau, R., Skinner, J., Wilkinson, R. J., Quinn, C., Blankenship, D., Dhawan, R., Cush, J. J., Mejias, A., Ramilo, O., Kon, O. M., Pascual, V., Banchereau, J., Chaussabel, D., and O’Garra, A. (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis, Nature 466, 973–977.

    Article  PubMed  CAS  Google Scholar 

  90. Loo, L. H., Wu, L. F., and Altschuler, S. J. (2007) Image-based multivariate profiling of drug responses from single cells, Nat Methods 4, 445–453.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Christopher Love .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yalçın, A., Yamanaka, Y.J., Love, J.C. (2012). Analytical Technologies for Integrated Single-Cell Analysis of Human Immune Responses. In: Lindström, S., Andersson-Svahn, H. (eds) Single-Cell Analysis. Methods in Molecular Biology, vol 853. Humana Press. https://doi.org/10.1007/978-1-61779-567-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-567-1_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-566-4

  • Online ISBN: 978-1-61779-567-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics