Skip to main content

Snapshots of Kinesin Motors on Microtubule Tracks

  • Protocol
  • First Online:
Single Molecule Enzymology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 778))

Abstract

Kinesin motors couple ATP hydrolysis to movement along microtubules, which act both as tracks and as activators of kinesin ATPase activity. Cryo-electron microscopy and image processing enables generation of three-dimensional snapshots of kinesin motors on their tracks at different stages of their ATPase cycle, and can reveal their motor mechanisms at secondary structure resolution. Here, we describe in detail the methods and conditions employed in our lab to prepare high-quality frozen-hydrated samples, which yield structural insights into kinesin motor mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirokawa, N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526

    Article  PubMed  CAS  Google Scholar 

  2. Wittmann, T., Hyman, A., and Desai, A. (2001) The spindle: A dynamic assembly of microtubules and motors. Nat. Cell Biol. 3, 28–34

    Article  Google Scholar 

  3. Vale, R.D., and Milligan, R.A. (2000) The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95

    Article  PubMed  CAS  Google Scholar 

  4. Cross, R.A. (2004) The kinetic mechanism of kinesin. TRENDS in Biochem. Sci. 29, 301–309

    Article  CAS  Google Scholar 

  5. Dubochet, J., Adrian, M., Chang, J.J., Homo, L.C., Lepault, J., McDowall, A.W., and Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Q Rev. Biophys. 21, 129–228

    Article  PubMed  CAS  Google Scholar 

  6. Kikkawa, M., and Hirokawa, N. (2006) High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187–4197

    Article  PubMed  CAS  Google Scholar 

  7. Hirose, K., Akimura, E., Akiba, T., Endow, S.A., and Amos, L.A. (2006) Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol. Cell 23, 913–923

    Article  PubMed  CAS  Google Scholar 

  8. Sindelar, C.V., and Downing, K.H. (2007) The beginning of kinesin’s force-generating cycle visualized at 9-Å resolution. J. Cell Biol. 177, 377–385

    Article  PubMed  CAS  Google Scholar 

  9. Bodey, A.J., Kikkawa, M., and Moores, C.A. (2009) 9  Å structure of a microtubule-bound mitotic motor. J. Mol. Biol. 388, 218–224

    Article  PubMed  CAS  Google Scholar 

  10. Sindelar, C.V., and Downing, K.H. (2010) An atomic-level mechanism for activation of the kinesin molecular motors. PNAS 107, 4111–4116.

    Article  PubMed  CAS  Google Scholar 

  11. Amos, L.A., and Hirose, K. (2007) Studying the structure of microtubules by electron microscopy. Methods Mol. Med. 137, 65–91

    Article  PubMed  CAS  Google Scholar 

  12. Moores, C. (2008) Studying Microtubules by Electron Microscopy. Methods in Cell Biol. 88, 299–317

    Article  CAS  Google Scholar 

  13. Iancu, C.V., Tivol, W.F., Schooler, J.B., Dias, D.P., Henderson, G.P., Murphy, G.E., Wright, E.R., Li, Z., Yu, Z., Briegel, A., Gan, L., He, Y., and Jensen, G.J. (2006) Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1, 2813–2819

    Article  PubMed  CAS  Google Scholar 

  14. Grassucci, R.A., Taylor, D.J., and Frank, J. (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nat. Protoc. 2, 3239–3246

    Article  PubMed  CAS  Google Scholar 

  15. Grassucci, R.A., Taylor, D.J., and Frank, J. (2008) Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes. Nat. Protoc. 3, 330–339

    Article  PubMed  CAS  Google Scholar 

  16. Metlagel, Z., Kikkawa, Y.S., and Kikkawa, M. (2007) Ruby-Helix: An implementation of helical image processing based on object-oriented scripting language. J. Struc. Biol. 157, 95–105

    Article  CAS  Google Scholar 

  17. Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., Leith, A., and Frank, J. (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974

    Article  PubMed  CAS  Google Scholar 

  18. Grigorieff, N. (2007) FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125

    Article  PubMed  CAS  Google Scholar 

  19. Ray, S., Meyhofer, E., Milligan, R.A., and Howard, J. (1993) Kinesin follows the microtubule’s protofilament axis. J. Cell Biol. 121, 1083–1093

    Article  PubMed  CAS  Google Scholar 

  20. Li, H., DeRosier, D.J., Nicholson, W.V., Nogales, E., and Downing, K.H. (2002) Microtubule structure at 8  Å resolution. Structure 10, 1317–1328

    Article  PubMed  CAS  Google Scholar 

  21. Chretien, D., Metoz, F., Verde, F., Karsenti, E., and Wade, R.H. (1992) Lattice defects in microtubules: Protofilament numbers vary within individual microtubules. J. Cell Biol. 117, 1031–1040

    Article  PubMed  CAS  Google Scholar 

  22. Konishi, Y., and Setou, M. (2009) Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559–567

    Article  PubMed  CAS  Google Scholar 

  23. Tilney, L.G., Bryan, J., Bush, D.J., Fujiwara, K., Mooseker, M.S., Murphy, D.B., and Snyder, D.H. (1973) Microtubules: evidence for 13 protofilaments. J. Cell Biol. 59, 267–275

    Article  PubMed  CAS  Google Scholar 

  24. McIntosh, J.R., Morphew, M.K., Grissom, P.M., Gilbert, S.P., and Hoenger, A. (2009) Lattice structure of cytoplasmic microtubules in a cultured Mammalian cell. J. Mol. Biol. 394, 177–182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank past and present members of the Moores Lab (Andy Bodey, Carsten Peters, Christina Hoey, and Kanwal Zehra) for helpful discussions. We are grateful to Kanwal Zehra and Natasha Lukoyanova for providing us with constructive comments on the manuscript. We thank the Wellcome Trust, the Birth Defects Foundation, the Ecole Normale Supérieure, and the French Ministère de la Recherche for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Moores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fourniol, F.J., Moores, C.A. (2011). Snapshots of Kinesin Motors on Microtubule Tracks. In: Mashanov, G., Batters, C. (eds) Single Molecule Enzymology. Methods in Molecular Biology, vol 778. Humana Press. https://doi.org/10.1007/978-1-61779-261-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-261-8_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-260-1

  • Online ISBN: 978-1-61779-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics