Skip to main content

Isolation of Synapse Subdomains by Subcellular Fractionation Using Sucrose Density Gradient Centrifugation

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 57))

Abstract

A protocol presents a purification of postsynaptic density (PSD), from rat brain by subcellular fractionation using solubilization of membrane with Triton X-100 and sucrose density centrifugation. The protocol also includes purification of other synapse subdomains such as synaptosome, synaptic plasma membrane, P1 (nuclei and cell debris), P2 (crude mitochondria fraction), S3 (soluble fraction), and P3 (microsomal fraction). The method presented in this text is the one established by Siekevitz group. The PSDs obtained by this method are mainly excitatory type I PSDs. The method has been widely used and is useful for biochemical analyses such as identification of proteins associated with these subdomains by proteomics methods and western blotting, and morphological analyses at the electron microscopic level.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Somerville, R. A., Merz, P. A., and Carp, R. I. (1984) The effects of detergents on the composition of postsynaptic densities, J Neurochem 43, 184–191.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen, R. S., Blomberg, F., Berzins, K., and Siekevitz, P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition, J Cell Biol 74, 181–203.

    Article  PubMed  CAS  Google Scholar 

  3. Wu, K., Carlin, R., and Siekevitz, P. (1986) Binding of L-[3H]glutamate to fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain, J Neurochem 46, 831–841.

    Article  PubMed  CAS  Google Scholar 

  4. Carlin, R. K., Grab, D. J., Cohen, R. S., and Siekevitz, P. (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities, J Cell Biol 86, 831–845.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, T. W., Wu, K., and Black, I. B. (1995) Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy, Ann Neurol 38, 446–449.

    Article  PubMed  CAS  Google Scholar 

  6. Hahn, C. G., Banerjee, A., Macdonald, M. L., Cho, D. S., Kamins, J., Nie, Z., Borgmann-Winter, K. E., Grosser, T., Pizarro, A., Ciccimaro, E., Arnold, S. E., Wang, H. Y., and Blair, I. A. (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses, PLoS ONE 4, e5251.

    Article  PubMed  Google Scholar 

  7. Suzuki, T., Okumura-Noji, K., Tanaka, R., Ogura, A., Nakamura, K., Kudo, Y., and Tada, T. (1993) Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus, and cerebellum, Brain Res 619, 69–75.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, T. W., Wu, K., Xu, J. L., and Black, I. B. (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy, Proc Natl Acad Sci USA 89, 11642–11644.

    Article  PubMed  CAS  Google Scholar 

  9. Wu, K., and Black, I. B. (1987) Regulation of molecular components of the synapse in the developing and adult rat superior cervical ­ganglion, Proc Natl Acad Sci USA 84, 8687–8691.

    Article  PubMed  CAS  Google Scholar 

  10. Wu, K., and Siekevitz, P. (1988) Neurochemical characteristics of a postsynaptic density fraction isolated from adult canine hippocampus, Brain Res 457, 98–112.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki, T., Mitake, S., Okumura-Noji, K., Shimizu, H., Tada, T., and Fujii, T. (1997) Excitable membranes and synaptic transmission: postsynaptic mechanisms. Localization of alpha-internexin in the postsynaptic density of the rat brain, Brain Res 765, 74–80.

    Article  PubMed  CAS  Google Scholar 

  12. Matus, A., Pehling, G., Ackermann, M., and Maeder, J. (1980) Brain postsynaptic densities: the relationship to glial and neuronal filaments, J Cell Biol 87, 346–359.

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki, T., Tian, Q. B., Kuromitsu, J., Kawai, T., and Endo, S. (2007) Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis, Neurosci Res 57, 61–85.

    Article  PubMed  CAS  Google Scholar 

  14. Cotman, C. W., and Taylor, D. (1972) Isolation and structural studies on synaptic complexes from rat brain, J Cell Biol 55, 696–711.

    Article  PubMed  CAS  Google Scholar 

  15. Nieto-Sampedro, M., Bussineau, C. M., and Cotman, C. W. (1981) Optimal concentration of iodonitrotetrazolium for the isolation of junctional fractions from rat brain, Neurochem Res 6, 307–320.

    Article  PubMed  CAS  Google Scholar 

  16. Cotman, C. W., Banker, G., Churchill, L., and Taylor, D. (1974) Isolation of postsynaptic densities from rat brain, J Cell Biol 63, 441–455.

    Article  PubMed  CAS  Google Scholar 

  17. Kelly, P. T., and Montgomery, P. R. (1982) Subcellular localization of the 52,000 molecular weight major postsynaptic density protein, Brain Res 233, 265–286.

    Article  PubMed  CAS  Google Scholar 

  18. Kelly, P. T., and Cotman, C. W. (1976) Intermolecular disulfide bonds at central nervous system synaptic junctions, Biochem Biophys Res Commun 73, 858–864.

    Article  PubMed  CAS  Google Scholar 

  19. Kelly, P. T., and Cotman, C. W. (1981) Developmental changes in morphology and molecular composition of isolated synaptic junctional structures, Brain Res 206, 251–257.

    Article  PubMed  CAS  Google Scholar 

  20. Lai, S. L., Chiang, S. F., Chen, I. T., Chow, W. Y., and Chang, Y. C. (1999) Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density, J Neurochem 73, 2130–2138.

    PubMed  CAS  Google Scholar 

  21. Sui, C. W., Chow, W. Y., and Chang, Y. C. (2000) Effects of disulfide bonds formed during isolation process on the structure of the postsynaptic density, Brain Res 873, 268–273.

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki, T., Okumura-Noji, K., Tanaka, R., and Tada, T. (1994) Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation, J Neurochem 63, 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  23. Carlin, R. K., Grab, D. J., and Siekevitz, P. (1982) Postmortem accumulation of tubulin in postsynaptic density preparations, J Neurochem 38, 94–100.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng, H. H., Huang, Z. H., Lin, W. H., Chow, W. Y., and Chang, Y. C. (2009) Cold-induced exodus of postsynaptic proteins from dendritic spines, J Neurosci Res 87, 460–469.

    Article  PubMed  CAS  Google Scholar 

  25. Li, X., Serwanski, D. R., Miralles, C. P., Bahr, B. A., and De Blas, A. L. (2007) Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex, J Neurochem 102, 1329–1345.

    Article  PubMed  CAS  Google Scholar 

  26. Ratner, N., and Mahler, H. (1983) Isolation of postsynaptic densities retaining their membrane attachment, Neuroscience 9, 631–644.

    Article  PubMed  CAS  Google Scholar 

  27. Cho, K. O., Hunt, C. A., and Kennedy, M. B. (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein, Neuron 9, 929–942.

    Article  PubMed  CAS  Google Scholar 

  28. Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W., Jr., Mercer, J. A., and Kennedy, M. B. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry, J Neurosci 20, 4069–4080.

    PubMed  CAS  Google Scholar 

  29. Murphy, J. A., Jensen, O. N., and Walikonis, R. S. (2006) BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses, Brain Res 1120, 35–45.

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki, T. (2002) Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density, Neurosci Res 44, 1–9.

    Article  PubMed  Google Scholar 

  31. Blomberg, F., Cohen, R. S., and Siekevitz, P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure, J Cell Biol 74, 204–225.

    Article  PubMed  CAS  Google Scholar 

  32. Matus, A. I., and Taff-Jones, D. H. (1978) Morphology and molecular composition of isolated postsynaptic junctional structures, Proc R Soc Lond B Biol Sci 203, 135–151.

    Article  PubMed  CAS  Google Scholar 

  33. Gurd, J. W., Gordon-Weeks, P., and Evans, W. H. (1982) Biochemical and morphological comparison of postsynaptic densities prepared from rat, hamster, and monkey brains by phase partitioning, J Neurochem 39, 1117–1124.

    Article  PubMed  CAS  Google Scholar 

  34. Matus, A. (1981) The postsynaptic density, Trends Neurosci 4, 51–53.

    Article  Google Scholar 

  35. Garner, A. E., Smith, D. A., and Hooper, N. M. (2008) Visualization of detergent solubilization of membranes: implications for the isolation of rafts, Biophys J 94, 1326–1340.

    Article  PubMed  CAS  Google Scholar 

  36. Shogomori, H., and Brown, D. A. (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly, Biol Chem 384, 1259–1263.

    Article  PubMed  CAS  Google Scholar 

  37. Phillips, G. R., Huang, J. K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., Shan, W. S., Arndt, K., Frank, M., Gordon, R. E., Gawinowicz, M. A., Zhao, Y., and Colman, D. R. (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution, Neuron 32, 63–77.

    Article  PubMed  CAS  Google Scholar 

  38. Chang, H. W., and Bock, E. (1980) Pitfalls in the use of commercial nonionic detergents for the solubilization of integral membrane proteins: sulfhydryl oxidizing contaminants and their elimination, Anal Biochem 104, 112–117.

    Article  PubMed  CAS  Google Scholar 

  39. Adam, R. M., Yang, W., Di Vizio, D., Mukhopadhyay, N. K., and Steen, H. (2008) Rapid preparation of nuclei-depleted detergent-resistant membrane fractions suitable for proteomics analysis, BMC Cell Biol 9, 30.

    Article  PubMed  Google Scholar 

  40. Fried, R. C., and Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes), J Cell Biol 78, 685–700.

    Article  PubMed  CAS  Google Scholar 

  41. Warburg, O., and Christian, W. (1941) Isolierung and Kristallisation des Garungsferment, Biochem Z 310, 384–421.

    Google Scholar 

Download references

Acknowledgments

The author learned the method of PSD purification in the Philip Siekevitz laboratory, Rockefeller University, New York. The author heartily thanks Dr. Philip Siekevitz and Marie LeDoux for their instruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Suzuki, T. (2011). Isolation of Synapse Subdomains by Subcellular Fractionation Using Sucrose Density Gradient Centrifugation. In: Li, K. (eds) Neuroproteomics. Neuromethods, vol 57. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-111-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-111-6_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-110-9

  • Online ISBN: 978-1-61779-111-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics