Skip to main content

Targeted Mutagenesis in Arabidopsis Using Zinc-Finger Nucleases

  • Protocol
  • First Online:
Plant Chromosome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 701))

Abstract

We report here an efficient method for making targeted mutations in Arabidopsis thaliana genes. The approach uses zinc-finger nucleases (ZFNs) – enzymes engineered to create DNA double-strand breaks at specific target loci. Imprecise repair of double-strand breaks by nonhomologous end-joining generates small insertions or deletions at the cleavage site. In this protocol, constructs encoding ZFNs for specific loci are transformed into Arabidopsis by Agrobacterium-mediated transformation. ZFN expression is induced during germination to initiate mutagenesis of the target locus. Typically, more than 20% of the primary transgenics segregate loss-of-function mutations in the next generation. ZFNs make it possible to expand the range of Arabidopsis mutants available for study and to create mutations in genes missed by random mutagenesis approaches, such as those using T-DNA, transposons, or chemical mutagens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature 408, 796–815.

    Article  Google Scholar 

  2. Alonso, J. M., and Ecker, J. R. (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis, Nat Rev Genet 7, 524–536.

    Article  PubMed  CAS  Google Scholar 

  3. Ossowski, S., Schwab, R., and Weigel, D. (2008) Gene silencing in plants using artificial microRNAs and other small RNAs, Plant J 53, 674–690.

    Article  PubMed  CAS  Google Scholar 

  4. Krysan, P. J., Young, J. C., and Sussman, M. R. (1999) T-DNA as an insertional mutagen in Arabidopsis, Plant Cell 11, 2283–2290.

    PubMed  CAS  Google Scholar 

  5. Parinov, S., and Sundaresan, V. (2000) Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project, Curr Opin Biotechnol 11, 157–161.

    Article  PubMed  CAS  Google Scholar 

  6. McCallum, C. M., Comai, L., Greene, E. A., and Henikoff, S. (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics, Plant Physiol 123, 439–442.

    Article  PubMed  CAS  Google Scholar 

  7. Jander, G., and Barth, C. (2007) Tandem gene arrays: a challenge for functional genomics, Trends Plant Sci 12, 203–210.

    Article  PubMed  CAS  Google Scholar 

  8. Cathomen, T., and Joung, J. K. (2008) Zinc-finger nucleases: the next generation emerges, Mol Ther 16, 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  9. Carroll, D. (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents, Gene Ther 15, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  10. Carroll, D., Morton, J. J., Beumer, K. J., and Segal, D. J. (2006) Design, construction and in vitro testing of zinc finger nucleases, Nat Protoc 1, 1329–1341.

    Article  PubMed  CAS  Google Scholar 

  11. Wright, D. A., Thibodeau-Beganny, S., Sander, J. D., Winfrey, R. J., Hirsh, A. S., Eichtinger, M., Fu, F., Porteus, M. H., Dobbs, D., Voytas, D. F., and Joung, J. K. (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly, Nat Protoc 1, 1637–1652.

    Article  PubMed  Google Scholar 

  12. Maeder, M. L., Thibodeau-Beganny, S., Osiak, A., Wright, D. A., Anthony, R. M., Eichtinger, M., Jiang, T., Foley, J. E., Winfrey, R. J., Townsend, J. A., Unger-Wallace, E., Sander, J. D., Muller-Lerch, F., Fu, F., Pearlberg, J., Gobel, C., Dassie, J. P., Pruett-Miller, S. M., Porteus, M. H., Sgroi, D. C., Iafrate, A. J., Dobbs, D., McCray, P. B., Jr., Cathomen, T., Voytas, D. F., and Joung, J. K. (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification, Mol Cell 31, 294–301.

    Article  PubMed  CAS  Google Scholar 

  13. Wyman, C., and Kanaar, R. (2006) DNA double-strand break repair: all’s well that ends well, Annu Rev Genet 40, 363–383.

    Article  PubMed  CAS  Google Scholar 

  14. Beumer, K. J., Trautman, J. K., Bozas, A., Liu, J. L., Rutter, J., Gall, J. G., and Carroll, D. (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases, Proc Natl Acad Sci USA 105, 19821–19826.

    Article  PubMed  CAS  Google Scholar 

  15. Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D., and Wolfe, S. A. (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases, Nat Biotechnol 26, 695–701.

    Article  PubMed  CAS  Google Scholar 

  16. Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., and Amacher, S. L. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases, Nat Biotechnol 26, 702–708.

    Article  PubMed  CAS  Google Scholar 

  17. Foley, J. E., Yeh, J. R., Maeder, M. L., Reyon, D., Sander, J. D., Peterson, R. T., and Joung, J. K. (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN), PLoS One 4, e4348.

    Article  PubMed  Google Scholar 

  18. Perez, E. E., Wang, J., Miller, J. C., Jouvenot, Y., Kim, K. A., Liu, O., Wang, N., Lee, G., Bartsevich, V. V., Lee, Y. L., Guschin, D. Y., Rupniewski, I., Waite, A. J., Carpenito, C., Carroll, R. G., Orange, J. S., Urnov, F. D., Rebar, E. J., Ando, D., Gregory, P. D., Riley, J. L., Holmes, M. C., and June, C. H. (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases, Nat Biotechnol 26, 808–816.

    Article  PubMed  CAS  Google Scholar 

  19. Geurts, A. M., Cost, G. J., Freyvert, Y., Zeitler, B., Miller, J. C., Choi, V. M., Jenkins, S.S., Wood, A., Cui, X., Meng, X., Vincent, A., Lam, S., Michalkiewicz, M., Schilling, R., Foeckler, J., Kalloway, S., Weiler, H., Menoret, S., Anegon, I., Davis, G. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., Jacob, H. J., and Buelow, R. (2009) Knockout rats via embryo microinjection of zinc-finger nucleases, Science 325, 433.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, F., Maeder, M., Renyon, D., Unger-Wallace, E., Hoshaw, J., Pierick, C., Peterson, T., Dobbs, D., and Voytas, D. (2010) High frequency targeted mutagenesis of Arabidopsis genes using zinc finger nucleases, Proc Natl Acad Sci USA 107(26), 12028–12033.

    Article  PubMed  CAS  Google Scholar 

  21. Zuo, J., Niu, Q. W., and Chua, N. H. (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants, Plant J 24, 265–273.

    Article  PubMed  CAS  Google Scholar 

  22. Maeder, M., Thibodeau-Beganny, S., Sander, J. D., Voytas, D. F., and Joung, J. K. (2009) Oligomerized Pool ENgineering (OPEN): an ‘open-source’ protocol for ­making customized zinc finger arrays, Nat Protoc 4, 1471–1501.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W., and Chua, N. H. (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method, Nat Protoc 1, 641–646.

    Article  PubMed  CAS  Google Scholar 

  24. Curtis, M. D., and Grossniklaus, U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta, Plant Physiol 133, 462–469.

    Article  PubMed  CAS  Google Scholar 

  25. Miller, J. C., Holmes, M. C., Wang, J., Guschin, D. Y., Lee, Y. L., Rupniewski, I., Beausejour, C. M., Waite, A. J., Wang, N. S., Kim, K. A., Gregory, P. D., Pabo, C. O., and Rebar, E. J. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing, Nat Biotechnol 25, 778–785.

    Article  PubMed  CAS  Google Scholar 

  26. Lombardo, A., Genovese, P., Beausejour, C. M., Colleoni, S., Lee, Y. L., Kim, K. A., Ando, D., Urnov, F. D., Galli, C., Gregory, P. D., Holmes, M. C., and Naldini, L. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery, Nat Biotechnol 25, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  27. Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., and Voytas, D. F. (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases, Nature 459, 442–445.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, F., Voytas, D.F. (2011). Targeted Mutagenesis in Arabidopsis Using Zinc-Finger Nucleases. In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-957-4_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-956-7

  • Online ISBN: 978-1-61737-957-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics