Chapter 4

An Overview on GPCRs and Drug Discovery: Structure-Based
Drug Design and Structural Biology on GPCRs

Kenneth Lundstrom

Summary

G protein-coupled receptors (GPCRs) represent 50-60% of the current drug targets. There is no doubt
that this family of membrane proteins plays a crucial role in drug discovery today. Classically, a number of
drugs based on GPCRs have been developed for such different indications as cardiovascular, metabolic,
neurodegenerative, psychiatric, and oncologic diseases. Owing to the restricted structural information on
GPCRs, only limited exploration of structure-based drug design has been possible. Much effort has been
dedicated to structural biology on GPCRs and very recently an X-ray structure of the B2-adrenergic
receptor was obtained. This breakthrough will certainly increase the efforts in structural biology on
GPCRs and furthermore speed up and facilitate the drug discovery process.

Key words: GPCRs, Drug discovery, Overexpression, Functional receptor, X-ray crystallography,
Structure-based drug design.

1. Introduction

The drug discovery process has passed through dramatic changes
during the past 20 years. The requirements for drug manufactur-
ing and especially the safety aspects related to the final medicine
have become immense. This development has made the drug
discovery and development processes both time-consuming and
labor intensive. Not surprisingly, development of drugs has
become extremely expensive. In addition, the success rate of bring-
ing new successful drugs to the market has been worryingly low.
One approach to speed up drug discovery and also to reduce the
adverse effects of developed drugs has been to apply structure-
based drug design. There are a number of examples of success. For
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instance, structural information has played an important role in
lead optimization in drug screening programs (1). Furthermore,
high-resolution structures of HIV proteinase (2) and influenza
virus neuraminidase (3) have contributed directly to the develop-
ment of AIDS (Agenerase™ and Viracept™) and flu (Relenza™)
drugs, respectively. In total, more than 10 drugs can today be
considered as designed based on known high-resolution structures
of target molecules.

Despite their prominent position as drug targets, very modest
progress in structure-based drug design has been observed for
membrane proteins. Although some 70% of the current drug
targets are membrane proteins, minimal direct efforts in struc-
ture-based drug discovery has been conducted on membrane pro-
teins. The simple reason is the very small number of high-
resolution structures available for membrane proteins in general
and more specifically for drug targets. Among the more than
35,000 structures deposited today in public databases less than
200 exist on membrane proteins (4).

2. GPCRs as Drug
Targets

GPCRs represent a broad spectrum of drug targets as they are the
mediators for so many essential biological activities. Their function
can be triggered by such different components as neurotransmit-
ters, peptides, hormones, chemokines, amino acids, calcium ions,
odorants, and even light, which results in signal transduction
events on the cell, tissue, organ, and whole organism level to adjust
to environmental requirements. Not surprisingly, GPCRs have
been targeted for many types of maladies including cardiovascular,
metabolic, neurodegenerative, neurological, virological, and
tumorigenic diseases.

Itis estimated that the human genome contains approximately
800 GPCRs of which a relatively large number is represented
by odorant receptors. The ligands for many odorant receptors
are still unknown and therefore they are called orphan receptors.
Also several non-odorant receptors belong to the group of recep-
tors for which ligands are not available. In total, some 100 GPCRs
are classified as orphan receptors and are considered as potentially
interesting novel drug targets as described in more detail
below (5).

Although GPCR signaling is mediated through G proteins, it
has fairly recently become evident that other signaling pathways
are possible. For instance, c-Src tyrosine kinase interaction with
the proline-rich SH3 domain in the third intracellular loop of the
B3-adrenergic receptor activates the extracellular signal-regulated
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kinase (ERK)-mitogen-activated protein kinase (MAPK) cascade
(6). Another example includes the interaction between B-arrestin-1
and c-Src, which facilitates the B2-adrenergic receptor-dependent
activation of the ERK-MAPK pathway (7). Moreover, the -
arrestin-1—c-Src interaction plays an important role in glucose
transport mediated by endothelin receptors (8) and the activation
of the STAT (signal transducer and activator of transcription)
transcription factor (9). These “alternative” pathways might present
interesting opportunities for the development of novel drugs.

Among the 200 top selling drugs today a quarter is based on
GPCRs with annual sales exceeding $200 billion worldwide (10).
Included in the best-selling GPCR-based drugs are salmeterol, an
anti-asthmatic f2-adrenergic agonist; olanzapine, an antipsychotic
serotonin 5-HT?2 /dopamine receptor antagonist; and clopidrogel,
an antithrombotic P2Y12 purinergic receptor antagonist (11). Other
“blockbuster” drugs targeted to GPCRs are HI-antihistamines
(fexofenadine, cetirizine, and desloratadine) and antihypertensive
angiotensin II receptor antagonists (losartan, valsartan, cardesartan,
and irbesartan).

3. Conventional
Drug Discovery
Approaches

Before initiation of any drug screening program it is highly recom-
mended to invest resources in target validation (12). In this con-
text, bioinformatics approaches including database mining,
comparative homology and species analysis, and iz silico expres-
sion studies are essential. Moreover, localization studies by i situ
hybridization, RT-PCRs, and microarrays are excellent means for
expression comparison in tissues originating from healthy and
diseased individuals. Furthermore, it has been demonstrated that
mutations in GPCRs can induce disease as is the case for constitu-
tive activity of certain GPCRs (13) and it is important to validate
the effect of various mutations. Once targets have been defined
drug screening can commence.

Typically, classic drug screening programs have relied on phar-
macological evaluation of GPCRs by radioligand binding assays
(14). In this context, large chemical libraries are screened in binding
assays for hits. The advent of recombinant protein expression meth-
ods has substantially facilitated the drug screening process as is
described in more detail below. Assay development has focused
strongly on automation and miniaturization and, for instance,
fluorescence intensity, fluorescence polarization, time-resolved
fluorescence resonance energy transfer (TR-FRET), and fluores-
cence macroconfocal technology (FMAT) methods have been uti-
lized for high-throughput screening in 96-, 384-; and 1536-well
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formats (15). The conventional process involves further chemical
modifications of discovered hit molecules on so-called lead com-
pounds. These compounds will be further tested for potency by
saturation binding assays, but also for specificity by performing
pharmacological evaluation on related receptor families and as well
as on receptor subtypes.

Much attention is today paid to the composition of the che-
mical libraries used for the screening process. The design of
chemical libraries has become more and more important and
approaches have been taken to generate ligand-based libraries
and relying on physicochemical and substructural properties
(16). Structure-based library design is described in more detail
below.

The majority of drug screening efforts have recently shifted
from binding assays to functional determination of receptor cou-
pling to G proteins. The advantage of change in strategy is the
possibility to evaluate agonists, antagonists, partial agonists, and
inverse agonists. A number of cell-based assays measuring cAMP
stimulation, inositol phosphate accumulation, and intracellular
Ca’*-release have been established (17). Application of Ca**-
sensitive dyes has allowed fluorescence imaging in automated
384-well format. Other screening approaches include the estab-
lishment of stable cell lines for second messenger and reporter
gene detection (B-lactamase and luciferase) for detection of tran-
scriptional regulation of promoter elements activated by GPCRs
(18). Moreover, transient expression of GPCRs in melanophores
from the neural crest of Xenopus laevis has allowed monitoring
functional activity by measurement of light absorption based on
pigment dispersion (19). Today agonist activation and antagonist
inhibition has been evaluated for more than 100 GPCRs in the
melanophore system. Although application of functional screen-
ing assays for GPCRs has broadened the drug discovery process
and facilitated finding new drug molecules, a number of other
approaches have been taken as presented below.

4. Chemical
Libraries and
Structure-based
Drug Design

Although the first high-resolution structure of a GPCR became
available only recently, approaches have previously been made to
use structural information in drug design (20). One approach has
been two- and three-dimensional mapping of the ligand—-GPCR
interaction sites applying homology models of rhodopsin and site-
directed mutagenesis to determine structure—activity relationships
(SARs) for ligands (16). Moreover, structural information on
GPCR ligands has presented the basis for design of chemical
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libraries for screening purposes (21). Pharmacophore-based
design of combinatorial libraries was applied to design a novel
series of indolyl sulfonamides as selective high-affinity serotonin
5-HT receptor ligands and resulted in the identification of some
novel compounds (22). Pharmacophore models have also been
used for virtual screening approaches to identify nonpeptidic
ligands for peptide-binding GPCRs such as the somatostatin
receptor known for its poor bioavailability and low metabolic
stability (23). Nonpeptidic antagonists for the urotensin II recep-
tor could be identified based on truncated peptide derivatives of
the cyclic 11 amino acid peptide urotensin II (24). Alanine scan-
ning and NMR spectroscopy resulted in the identification of the
Trp-Lys-Trp motif in the cyclic part of the human urotensin II.
Likewise, when two different pharmacore models were established
172 virtual antagonist hits were identified for the muscarinic M3
receptor leading to three compounds with a novel scaffold (25).
Other nonpeptidic GPCR ligands have been designed for opioid
(26), thrombin (27), and somatostatin (28) receptors.

Moreover, ligand-based three-dimensional quantitative SAR
(3D-QSAR) methods have been applied for lead optimization.
Using comparative molecular field analysis (CoMFA) for the cor-
relation of the steric and electronic field environment a number of
GPCR lead compounds were optimized (29, 30). For instance,
successful ligand optimization for dopamine (31, 32), serotonin
(33, 34), endothelin (35), and adenosine (36, 37) receptors has
been reported for CoMFA. Moreover, ligand selectivity has also
been addressed by demonstrating side affinities for a series of aryl
piperazines active against the serotonin 5-HT1A receptor for the
al-adrenergic receptor (38). When the ligand-based CoMFA
method was combined with 3D receptor modeling of serotonin
receptor subtypes, the serotonin 5-HT2C/2B indoline urea lead
series showed only minor side affinity against the serotonin 5-
HT2A receptor (39, 40).

The progress in chemogenomics has also had a big impact on
the design of targeted libraries. The PREDICT technology was
developed for 3D structure modeling of GPCRs (41). PREDICT
does not require a structural template and can be used for any
GPCR amino acid sequence. Consequently, PREDICT has been
applied for dopamine D2, neurokinin 1, neuropeptide Y1, and
chemokine CCR3 receptors and demonstrated good agreement
with data from a large number of experiments.

Virtual screening has become important in drug discovery
because of potential time and cost reductions. For instance, apply-
ing the 2.8 A-resolution X-ray structure of bovine rhodopsin as a
homology model for antagonist screening of three human GPCRs
(the dopamine D3 receptor, the muscarinic M1 receptor, and the
vasopressin V1a receptor) (42) showed that it was possible to
distinguish known antagonists from randomly chosen molecules.
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Three different docking programs (Dock, FlexX, Gold) were used
in combination with seven scoring functions (ChemScore, Dock,
FlexX, Fresno, Gold, Pmf, Score). In another approach, PRE-
DICT was applied for virtual screening of several GPCRs resulting
in enrichment factors of 9- to 44-fold better than what was
obtained from random screening (43). Moreover, a practical scor-
ing function was applied to assess the druggability of compounds,
which consisted of 12 metrics taking into account physical, che-
mical, and structural properties and undesirable functional groups
(44). Evaluation of the 12-metric scoring function for 44 different
databases including more than 3.8 million commercially available
compounds indicated that the majority of compounds that did not
show satisfactory druggability had a high molecular weight and
high logP values and also indicated the presence of reactive func-
tional groups.

5. Novel
Approaches
Including
Dimerization and
Orphan GPCRs

In addition to conventional screening of molecules reacting
with GPCRs more adventurous approaches have been to target
pathways other than those involving G proteins (20). Typi-
cally, a number of GPCRs can signal through interaction with
arrestins and other cellular proteins. For instance, receptor—
protein interaction occurs between the angiotensin 1A recep-
tor and the C terminus of the Janus 2 kinase (JAK2) through
activation of the STAT transcription factor (9). Investment in
targets for alternative pathways might bring substantial
rewards as the signaling through G proteins has been so well
documented and fairly few novel discoveries are anticipated.
On the other hand, employing combinatorial chemistry and
advanced chemical libraries for the screening procedure might
be productive (16).

There are two other interesting relatively novel approaches for
drug discovery on GPCRs. Approximately a decade ago the exis-
tence of GPCR dimers and higher multimers was documented
(45). Interestingly, it was demonstrated that GABAg receptors
required both GABAg-rl and GABAg-r2 subunits in a dimer
composition to obtain functional receptors on the plasma mem-
brane (46). Other GPCRs such as taste receptors can also form
dimers. Most interestingly, the heterodimeric TIR1+T1R3 com-
bination generates the umami receptor, whereas the TIR2+T1R3
heterodimer defines the sensor for sweet taste (47, 48). Moreover,
when the leukotriene BLT1 receptor was expressed in Escherichin
coli inclusion bodies low-affinity binding homodimers were
obtained after refolding, which could be reverted to high-affinity
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binding after addition of a heterotrimeric Gal2p1y2 complex to
the refolded GPCRs (49). This suggested the requirement of
GPCR dimerization.

The biggest impact dimerization can have on drug discovery is
most likely on the activation of different signaling pathways, recep-
tor desensitization and sensitization, and modulation of GPCRs
(45, 50). For this reason, the number of potential drugs could
increase significantly and programs on oligomeric GPCRs could
be included in drug screening strategies. The action of drug mole-
cules on additional sites in comparison to monomeric GPCR
binding sites would also have an impact on drug design. In this
context, novel designs of dimeric ligands with two covalently
linked monovalent ligands could possibly more efficiently induce
or stabilize dimeric GPCR conformations (51). In order to pre-
vent the potential protein—protein interaction in dimers, enhance-
ment or disruption of oligomerization could be promoted in drug
design.

Another approach has been to target orphan GPCRs. By
definition, these are receptors for which no ligand has been
defined yet. Despite extensive deorphanization programs some
100 orphan GPCREs still exist (52). Orphan receptors are con-
sidered as potentially interesting targets as the initiation of
several drug discovery programs indicate. In this context, noci-
ceptin/orphanin FQ has been evaluated for pain and anxiety
(53), orexin/hypocretin for narcolepsy (54) and food intake
(55), ghrelin for obesity (56), and metastin for potency in
oncology (57). The impact of orphan GPCRs is difficult to
evaluate as only few receptors have been deorphanized, so far.
One concern has been the relatively low endogenous levels of
their ligands and their potential signaling through G protein-
independent pathways. Drug development programs on orphan
receptors can therefore be considered risky, but the rewards
through finding novel treatment for disease, when successtul,
will also be substantial.

6. Overexpression
of GPCRs

To support drug screening activities and structural biology initia-
tives it is essential to obtain high-level expression of GPCRs. As the
seven-transmembrane topology of GPCRs makes the expression
more difficult and demanding compared to soluble protein, it is
not surprising that more or less every available expression system has
been tested (58). Both prokaryotic and eukaryotic expression
systems have been used frequently and recently also cell-free
E. coli- and wheat germ-based systems have been applied. Although
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cell-free translation has mainly been used for soluble proteins, novel
development has also allowed reasonable expression of membrane
proteins (59, 60). E. coli vectors are the most frequently used
prokaryotic vectors. GPCRs have been expressed both in inclusion
bodies (61) and the plasma membrane (62). The approach of
production in inclusion bodies generates relatively high expression
level, but the drawback is that extensive refolding exercise is
required to restore the GPCR (63). On the other hand, targeting
GPCRs to the plasma membrane can generate functional GPCRs.
However, the membrane insertion often results in growth regres-
sion of bacterial host cells and reduced recombinant protein yields
due to the GPCR toxicity. Improved expression has been achieved
by introduction of mutations and deletions in the target GPCR and
engineering fusions to, for instance, maltose binding protein (MBP)
(64). This approach has resulted in production of milligram levels of
rat neurotensin receptor in E. coli cultured in fermentors (65). In
addition to E. colz, Halobacterinm salinarum (66) and Lactococcus
lactis (67) have been applied for GPCR expression. The yields
obtained have so far, however, been relatively modest.

Yeast-based expression of GPCRs has received plenty of
attention. The most frequently used yeast hosts are Saccharo-
myces cevevisine (68, 69) and Pichin pastoris (70). Particularly, the
application of P. pastoris has resulted in high binding activity (up
to 100 pmol/mg) and impressive yields (5 mg/L) of a large
number of GPCRs (71). Likewise, Baculovirus vectors carrying
GPCRs have been introduced into insect cells resulting in robust
expression of functionally active GPCRs (72). Up to 16 GPCRs
were expressed from Baculovirus vectors in parallel resulting in
250 pmol/mg receptor (73). The production of GPCRs in
insect cells cultured in bioreactors has provided sufficient mate-
rial for structural studies on GPCRs as described below. Applica-
tion of mammalian expression systems for the overexpression of
GPCRs has been to some extent hampered by time-consuming
and expensive procedures and low expression levels. Despite that
a mutant HEK293 cell line allowed production of up to 6 mg/L
of rhodopsin (74). A number of viral vectors such as adeno-
viruses, vaccinia viruses, lentiviruses, and alphaviruses have also
been used for GPCR expression. Particularly, Semliki Forest
virus (SFV) vectors, an alphavirus, have been applied for the
expression of more than 100 GPCRs in different cell lines (75,
76). The SFV system has shown high expression levels measured
by saturation binding (>100 pmol/mg) and functional coupling
to G proteins (intracellular Ca?* release, inositol phosphate
accumulation, cAMP stimulation, and GTPyS binding). Further-
more, the system has been scaled up to allow large-scale produc-
tion in multiple liter volumes in spinner and roller flasks as well
as in bioreactors.
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7. Structural
Biology on GPCRs

Although no high-resolution structure of therapeutically inter-
esting GPCRs had been solved until recently, reasonable infor-
mation has been available for GPCRs from other structures.
Tertiary models of various GPCRs have been built based on
the high-resolution structure of bacteriorhodopsin obtained
from Halobacterium salinarium (77). A further improvement
occurred when the three-dimensional structure of bovine rho-
dopsin became available (78) as modeling could switch to this
mammalian receptor. However, the real breakthrough was
seen very recently when the high-resolution structure of the
human P2-adrenergic receptor-lysozyme complex was solved
by receptor overexpression in Baculovirus-infected insect cells
(79, 80). The fusion protein was bound to the partial inverse
agonist carazolol at a 2.4 A resolution. Despite a similar loca-
tion of carazolol in the P2-adrenergic receptor and retinal in
rhodopsin, structural differences in the ligand-binding site
and other regions were observed. This clearly signifies the
shortcomings of using rhodopsin as a template for GPCR
modeling.

In absence of high-resolution structures, site-directed muta-
genesis has been applied to investigate the site(s) of interaction
between GPCRs and their ligands. In combination with bioinfor-
matics and modeling, site-directed mutagenesis supported by iz
vitro expression in cells can provide important information on
change in binding affinity and functional activity. For instance,
mutation of an asparagine residue in the TM2 of the GnRH
receptor resulted in complete loss of binding activity (81). How-
ever, the presence of a second mutation in the TM7 restored the
binding activity, which indicated a close proximity of TM2 and
TM7. Studies on the neurokinin-1 receptor (NKIR) showed that
three adjacent N-terminal residues (Asn23, Glu24, and Phe25)
affected substance P binding (82). Moreover, His108 located on
the top of TM3 and Tyr287 on the top of TM7 were shown to
interact with substance P (83). Other studies revealed that the
binding mode for the nonpeptide antagonist CP 96,345 was
different from substance P (84) for NKIR and their binding
pockets were also different (85). Furthermore, mutant His197
showed a significantly reduced affinity to CP 96,345 (86). For
other GPCRs, it was demonstrated by site-directed mutagenesis
that ligand binding at the B2-adrenergic receptor occurred mainly
within the membrane-spanning regions flanking TMs 3, 5, 6, and
7 (87) and that three binding sites for 5-hydroxytryptamine
(5-HT), propranolol, and 8-hydroxy- N, N-diproprylaminotetralin
(8-OH-DPAT) within the highly conserved 7TM domain existed
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for the serotonin 5-HT1A receptor (88). Overall, based on results
obtained from molecular modeling and mutagenesis studies it was
suggested that family A receptors might share a common binding
pocket (89, 90). However, because the same effect can be obtained
by allosteric modulations (91) and constitutive signaling (92) this
view might be oversimplified.

Other approaches to obtain structural information have been
to define the proximity and orientation of TM regions by the
introduction of histidine zinc (II) binding sites into neurokinin
(93) and opioid receptors (94). Furthermore, distance constraints
and flexibility of extracellular loops could be determined for the
muscarinic M3 receptor by engineering of cysteine mutants (95).
In another approach, fluorescent unnatural amino acids were
introduced at defined sites for determination of distances and
tertiary structures by FRET technology (96). Finally, electron
paramagnetic resonance (EPR) spectroscopy and cysteine cross-
linking has provided information on helix orientation, flexibility
of receptor loops, and the conformational changes induced by

light (97).

8. Conclusions and
Future Prospects

GPCRs will continue to serve as the most important drug targets
in modern medicine. Although drug screening on GPCRs is
anticipated to constitute a large part of these activities other
approaches will be applied. Much attention will be given to the
design of larger and more specialized (GPCR-oriented) libraries.
The development of sophisticated software programs and the
advancement in bioinformatics will further improve the possibi-
lities of increasing virtual screening methods. This will certainly
significantly reduce both costs and time in drug development.
As most of the conventional approaches for GPCR screening
have already been explored and the chances of discovery of novel
drug molecules diminish, it will be essential to look for new
opportunities. Orphan GPCRs might be interesting targets for
further exploration as ligand molecules with novel therapeutic
properties might be discovered. Moreover, investigation of non-
G protein signaling pathways for GPCRs might reveal novel
mechanisms of actions and in that context discovery of novel
therapeutic targets. Finally, structure-based drug design has
indeed seen a major breakthrough through the determination
of the first human GPCR structure. It is anticipated that
other GPCR structures will follow shortly, which will certainly
open up extensive new possibilities for rational drug design
approaches.
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