Skip to main content

Emerging Suspended-Growth Biological Processes

  • Chapter
Advanced Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 9))

Abstract

Among the emerging suspended-growth biological treatment processes covered in this chapter are powdered activated carbon treatment (PACT) process, carrier-activated sludge process (CAPTOR and CAST systems), activated bio-filter (ABF), vertical loop reactor (VLR), and phostrip process. This chapter describes the above processes and explains their practice, limitations, design criteria, energy requirements, process equipment, performance, and costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.K. Wang, New dawn in development of adsorption technologies,The 20th Annual Meeting of the Fine Particle Society Symposium on Activated Carbon Technology, Boston, MA, Aug. (1989).

    Google Scholar 

  2. L.K. Wang and Y. Li, Sequencing batch reactors. In:Biological Treatment Processes, L. K. Wang, N. C. Pereira, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

  3. L.K. Wang and L. Kurylko,Sequencing Batch Liquid Treatment. U. S. Patent and Trademark Office, Washington, DC. U. S. Patent #. 5,354,458, Oct. (1994).

    Google Scholar 

  4. L.K. Wang, P. Wang, and N. L. Clesceri, Groundwater decontamination using sequencing batch processes,Water Treatment, 10, 2, 121–134 (1995).

    CAS  Google Scholar 

  5. M.Krofta, L. K. Wang, and M. Boutroy,Development of a New Treatment System Consisting of Adsorption Flotation and Filtration, US Dept. of Commerce, National Technical Information Service, Springfield, VA, USA. Report #.PBS5-20940l/AS, p. 28 (1984).

    Google Scholar 

  6. L.K. Wang and R. Menon, Membrane bioreactor. In:Advanced Biological Treatment Processes, L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

  7. L.K. Wang, Removal of organic pollutants by adsorptive bubble separation processes,1974 Earth Environment and Resources Conference Digest of Technical Papers, 1, 74, 56–57, Sept. (1974).

    CAS  Google Scholar 

  8. WEF and ASCE,Design of Municipal Wastewater Treatment Plants, WEF Manual of Practice No 8 and ASCE Manual and Report on Engineering Practice No. 76. WEF, Alexandria, VA (1992).

    Google Scholar 

  9. T.L. Randall, W. M. Copa, and M. J. Dietrich, Leachate treatment by a powdered activated carbon process, Presented at the59th Annual Conference of the Water Pollution Control Federation, Los Angeles, CA, Oct. (1986).

    Google Scholar 

  10. K.J. Deeny, J. A. Heidman, and A. J. Condren,Performance of Activated Sludge Powdered Activated Carbon/Wet Air Regeneration Systems, EPA 600/S2-90/012, Cincinnati, OH (1990).

    Google Scholar 

  11. K.Depuydt and R. Amundson, Solving an ash buildup challenge. Pollution Engineering, p. 73 Dec. (1991).

    Google Scholar 

  12. J.A. Meidl, Personal Communication from Zimpro Passavant Environmental Systems, Inc., to P. M. Sutton Oct. (1991).

    Google Scholar 

  13. L.K. Wang and Z. Wu, Activated sludge processes. In:Biological Treatment Processes, L. K. Wang, N. C. Pereira, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

  14. US EPA,Nitrogen Control, Tech. Report # EPA/625/R-93/010, U. S. Environmental Protection Agency, Washington, DC, (1993).

    Google Scholar 

  15. L.Beftens, Powdered activated carbon in an activated sludge unit,Journal of Effluent and Water Treatment, 9, 129 (1979).

    Google Scholar 

  16. N. A. Leipzig, Effectiveness of the powdered activated carbon activated sludge system in removing ammonia from an organic chemical production wastewater,Proceedings of the 35th Industrial Waste Conference, pp. 889–897, Purdue University, Lafayette, IN. Ann Arbor, MI, (1980).

    Google Scholar 

  17. A. S. Ng and M. K. Stenstrom, Nitrification in powdered-activated carbon- activated sludge process,Journal of Environmental Engineering, 113, 1285 (1987).

    Article  CAS  Google Scholar 

  18. N. K. Shammas, Interaction of temperature, pH, and biomass on the nitrification process,J. Water Pollution Control Federation, 58, 1, 52–59, Jan. (1986).

    CAS  Google Scholar 

  19. L. K. Wang,Manufacturers and Distributors of Activated Carbons and Adsorption Filters, p. 33, Zorex Corporation, Pittsfield, MA, Technical Report # P917-5-89-7, May (1989).

    Google Scholar 

  20. Editor, Water & wastewater products: 2004 buyer's guide,Environmental Protection, p. 163 Dec. (2003).

    Google Scholar 

  21. Editor, Water & wastes digest 2004 reference guide,Water & Wastes Digest, p. 95, Bolingbrook, IL, Dec. (2003).

    Google Scholar 

  22. L. K. Wang, The adsorption of dissolved organics from industrial effluents onto activated carbon,Journal of Applied Chemistry and Biotechnology, 25, 7, 491–503 (1975).

    Article  CAS  Google Scholar 

  23. L. K. Wang, Adsorption, coagulation and filtration make a useful treatment combination, Part I,Water and Sewage Works, 123, 12, 42–47, Dec. (1976).

    CAS  Google Scholar 

  24. L. K. Wang, Adsorption, coagulation and filtration make a useful treatment combination, Part II,Water and Sewage Works, 124, 1, 32–36, Jan. (1977).

    Google Scholar 

  25. L. K. Wang,Treatment of Potable Water from Seoul, Korea by Flotation, Filtration and Adsorption, p. 21, US Dept. of Commerce, National Technical Information Service, Springfield, VA. PB88-200530/AS, March (1988).

    Google Scholar 

  26. L. K. Wang, M. H. S. Wang, and J. Wang, Design,Operation and Maintenance of the Nation's Largest Physicochemical Waste Treatment Plant, Vol. 1, p. 183, Lenox Institute of Water Technology, Lenox, MA, Report # LIR/03-87-248, March (1987).

    Google Scholar 

  27. L. K. Wang, M. H. S. Wang, and J. Wang,Design, Operation and Maintenance of the Nation's Largest Physicochemical Waste Treatment Plant, Vol. 2, p. 161, Lenox Institute of Water Technology, Lenox, MA, Report # LIR/03-87/249, March (1987).

    Google Scholar 

  28. L. K. Wang, M. H. S. Wang, and J. Wang,Design Operation and Maintenance of the Nation' Largest Physicochemical Waste Treatment Plant, Vol. 3, p. 227, Lenox Institute of Water Technology, Lenox, MA, Report # LIR/03-87/250, March.

    Google Scholar 

  29. L. K. Wang,Removal of Heavy Metals, Chlorine and Synthetic Organic Chemicals by Adsorption, p. 47, Zorex Corporation, Pittsfield, MA, Tech. Report # P917-5-89-8, May (1989).

    Google Scholar 

  30. L. K. Wang, Reduction of color, odor, humic acid and toxic substances by adsorption, flotation and filtration, Annual Meeting of American Institute of Chemical Engineers,Symposium on Design of Adsorption Systems for Pollution Control, p. 18, Philadelphia, PA, Aug. (1989).

    Google Scholar 

  31. L. K. Wang,The State-of-the-Art Technologies for Water Treatment and Management, p. 145, United Nations Industrial Development Organization (UNIDO), Vienna, Austria, UNIDO Training Manual # 8-8-95, Aug. (1995).

    Google Scholar 

  32. C. Webb, G. M. Black, and B. Atkinson (eds.),Process Engineering Aspects of Immobilized Cell Systems, Pergamon Press, Elmsford, NY (1986).

    Google Scholar 

  33. J. Tampion and M. D. Tampion,Immobilized Cells: Principles and Applications, Cambridge University Press, Cambridge, MA (1987).

    Google Scholar 

  34. M. Moo-Young (ed.),Bioreactor Immobilized Enzymes and Cells-Fundamentals and Applications, Elsevier Applied Science, New York (1988).

    Google Scholar 

  35. C. E. ZoBell, The effect of solid surfaces upon bacterial activity,Journal of Bacteriology, 46, 39 (1943).

    CAS  Google Scholar 

  36. K. L. Sublette, E. H. Snider, and N. D. Sylvester, A review of the mechanism of powdered activated carbon enhancement of activated sludge treatment,Water Research, 16, 1075 (1982).

    Article  CAS  Google Scholar 

  37. R. Z. Maigetter and R. M. Plister, A mixed bacterial population in a continuous culture with and without kaolinite,Canadian Journal of Microbiology, 21, 173 (1975).

    Article  CAS  Google Scholar 

  38. D. Oakley, The retention of biomass in fast flowing systems. In:Process Engineering Aspects of Immobilised Cell Systems, C. Webb, O. M. Black, and B. Atkinson (eds.), Pergamon, Elmsford, NY (1986).

    Google Scholar 

  39. J. N. Wardell, C. M Brown, D. C. Ellwood, and A. E. Williams, Bacterial growth on inert surfaces. In:Continuous Culture 8: Biotechnology, Medicine and the Environment, A. C. R. Dean, D. C. Ellwood, and C. G. T. Evans, Ellis Horwood, Chichester, England (1984).

    Google Scholar 

  40. W. J. Jewell, Anaerobic attached film expanded bed fundamentals. In:Fixed Film Biological Process for Wastewater Treatment, Y. C. Wu and E. D. Smith (eds.), Noyes Publishing, Park Ridge, NJ (1983).

    Google Scholar 

  41. R. J. Shimp and F. K. Pfaender, Effects of surface area and flow rate on marine bacterial growth in activated carbon columns,Applied Environmental Microbiology, 44, 471 (1982).

    CAS  Google Scholar 

  42. W. J. Weber, Jr., M. Pirbazari, and G. L. Melson, Biological growth on activated carbon: an investigation by scanning electron microscopy,Environmental Science and Technology, 12, 817 (1978).

    Article  CAS  Google Scholar 

  43. H. Heukelekian and A. Heller, Relations between food concentration and surface bacterial growth,Journal of Bacteriology, 40, 547 (1940).

    CAS  Google Scholar 

  44. H. J. Conn and J. E. Conn, The stimulating effect of colloids upon the growth of certain bacteria,Journal of Bacteriology, 39, 99 (1940).

    CAS  Google Scholar 

  45. J. H. Harwood and S. J. Pirt, Quantitative aspects of growth of the methane oxidizing bacteriumMethylococcus capsulatuson methane in shake flask and continuous chemostat culture,Journal of App!ied Bacteriology, 35, 597 (1972).

    CAS  Google Scholar 

  46. G. Stotzky, Influence of clay minerals on microorganisms. II. Effect of various clay species, homionic clays, and other particles on bacteria,Canadian Journal of Microbiology, 12, 831 (1966).

    Article  CAS  Google Scholar 

  47. G. Stotzky and L. T. Rem, Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria,Canadian Journal. Microbiology, 12, 547 (1966).

    Article  CAS  Google Scholar 

  48. D. L. King and R. D. Verma, The role of particulate substances in biotic degradation of organic waste,Proceedings of the 23rd Purdue Industrial Waste Conference, 75 (1968).

    Google Scholar 

  49. R. W. Harvey and L. Y. Young, Enumeration of particle- bound and unattached respiring bacteria in the salt marsh environment,Applied Environ,ental Microbiology, 40, 1, 156 (1980).

    CAS  Google Scholar 

  50. M. W. LeChevallier, C. D. Cawthon, and R. G. Lee, Mechanisms of bacterial survival in chlorinated drinking water,Proceedings of the International Conference on Water Wastewater Microbiology, Irvine, CA, February 8 to 11 (1988).

    Google Scholar 

  51. T. J. Marrie and J. W. Costerton, Prolonged survival ofSerratia marcescensin chlorhexidine,App!ied Environmental Microbiology, 42, 1093 (1981).

    CAS  Google Scholar 

  52. K. C. Marshall, Adsorption of microorganisms to soils and sediments. In:Adsorption of Microorganisms to Surfaces, G. Bitton and K. C. Marshall (eds.), Wiley, New York (1980).

    Google Scholar 

  53. G. Henry, D. Prasad, and W. Lohaza, Survival of indicator Bacteria during Leaching, presented at Joint Canadian Society of Civil Engineers-American Society of Civil EngineersNational Conference onEenvironmental Engineering, Vancouver, July 13 to 15 (1988).

    Google Scholar 

  54. G. M. Black and C. Webb, An immobilization technology based on biomass support particles. In:Process Engineering Aspects of Immobilized Cell Systems, C. Webb, G. M. Black, and B. Atkinson (eds.), Pergamon, Elmsford, NY (1986).

    Google Scholar 

  55. US. EPA,Demonstration and Evaluation of the CAPTOR Process for Sewage Treatment, US Environmental Protection Agency # PB 89-118 665/AS, Cincinnati, OH (1989).

    Google Scholar 

  56. US EPA,Project Summary: Demonstration and Evaluation of the CAPTOR Process for Sewage Treatment, U. S. Environmental Protection Agency, # EPA/600/S2-88/060, Risk Reduction Engineering Laboratory, Cincinnati, OH, Feb. (1989).

    Google Scholar 

  57. P. F. Cooper, I. Walker, H. E. Crabtree, and R. P. Aldred, Evaluation of the CAPTOR process for uprating an overloaded sewage works. In:Process Engineering Aspects of Immobilized Cell Systems, C. Webb, G. M. Black, and B. Atkinson (eds.), Pergamon, Elmsford, NY (1986).

    Google Scholar 

  58. P. E. Tharp and M. Frymier, High intensity biological systems using the captivated sludge process, presented at59th Water Pollution Control Federation Conference, Los Angeles, October 5 to 9 (1986).

    Google Scholar 

  59. C. E. Tharp high rate nitriftcation with CAPTOR Process, report from studies conducted by S. K. Banerji and J. N. Lin, University of Missouri, Columbia (1988).

    Google Scholar 

  60. F. Rogalla and M. Payraudeau, Tertiary nitrification with fixed biomass reactors, presented atIAWPRC Conference, Brussels, Belgium, November 24 to 28 (1987).

    Google Scholar 

  61. F. Rogalla and J. Jarosz, Upgrading high load activated sludge plants with biomass support systems - comparison of porous carriers with fixed submersible beds, presented at60th Water Pollution Control Federation Conference, Philadelphia, October 4 to 7 (1982).

    Google Scholar 

  62. W. Hegemann, A combination of the activated sludge process with fixed film biomass to increase the capacity of waste water treatment plants,Water Science and Technology, 16, 119 (1984).

    CAS  Google Scholar 

  63. S. R. Richards, M. Davies, and C. Hastwell, An evaluation of the CAPTOR process: a controllable fixed film process for wastewater treatment. In:Process Engineering Aspects of Immobilized Cell Systems, C. Webb, G. M. Black, and B. Atkinson (eds.), Pergamon, Elmsford, NY (1986).

    Google Scholar 

  64. W. C. Boyle and A. T. Wallace,Status of Porous Biomass Support Systems for Wastewater Treatment: An Innovative/Alternative Technology Assessment, Project Summary, EPA/600/S2-86/019, Environmental Protection Agency, Washington, DC (1986).

    Google Scholar 

  65. US EPA,Innovative and alternative Technology Assessment Manual, US Environmental Protection Agency, EPA/430/9-78-009, Washington, DC (1980).

    Google Scholar 

  66. J. W. Smith and H. A. Khararjian, Activated fixed film biosystems in wastewater treatment,Proceedings of First International Conference on Fixed-Film Biological Processes, Kings Island, OH, April 20–23 (1982).

    Google Scholar 

  67. J. Park, S. Takizawa, H. Katayama, and S. Ohgaki, Biofilter pretreatment for the control of microfiltration membrane fouling,Water Supply, 2, 2, 193 (2002).

    CAS  Google Scholar 

  68. Bohn Biofilter Corp.,What is Biofiltration,WWW.bohnbiofilter.com/html/What_is_Biofiltration_.html(2004)

  69. Water Online,Wastewater Biofilter, www.wateronline.com/content/productshowcase/product.asp? (2004).

    Google Scholar 

  70. Waterloo Biofilter Systems,The Future of On-Site Wastewater Treatment and Disposal, www.waterloo-biofilter.com, (2004).

    Google Scholar 

  71. N. K. Shammas, Wastewater management and reuse in housing projects,Water Reuse Symposium I V, Implementing Water Reuse, pp. 1363–1378, AWWA Research Foundation, Denver, CO, August 2–7 (1987).

    Google Scholar 

  72. N. K. Shammas, An allosteric kinetic model for the nitrification process,Proceedings of the Tenth Annual Conference of Water Supply Improvement Association, pp. 1–30, Honolulu, HI, July (1982).

    Google Scholar 

  73. Hunter Water,Burwood Beach Wastewater Treatment Works, PDF File,Hunter Water Web Site, June 20, www.hunterwater.com.au/docs/reports/Burwood%20WWTW.pdf (2002).

    Google Scholar 

  74. Metcalf and Eddy,Wastewater Engineering Treatment and Reuse, 4th ed., McGraw Hill, New York (2003).

    Google Scholar 

  75. A. Vesilind,Wastewater Treatment Plant Design, Water Environment Federation and IWA Publishing, Alexandria, VA, USA (2003).

    Google Scholar 

  76. NSFC,Technical Evaluation of the Vertical Loop Reactor Process Technology, U. S. EPA Project No. WWPCRE13, Office of Water, National Small Flows Clearinghouse, Morgantown, WV, Sept. (1992).

    Google Scholar 

  77. J. M. Smith & Associates,Technical Evaluation of the Vertical Loop Reactor Process Technology, US Environmental Protection Agency, November (1991).

    Google Scholar 

  78. R. A. Brandt, E. J. Brown, and G. B. Shaw, Innovative Retrofit without Federal Funds: Brookville, Ohio Wastewater Treatment Facilities,63rd Annual Meeting of the Ohio Wastewater Pollution Control Association, June 16, (1989).

    Google Scholar 

  79. Telephone conversations and correspondence with George Smith ofEnvirexand miscellaneous information provided byEnvirexregarding design criteria, budget costs, etc. (1991).

    Google Scholar 

  80. G. L. Huibrestse, C. W. Smith, D. J. Thiel, and J. W. Wittmann,Introduction to the Vertical Loop Reactor Process, June 12 (1986).

    Google Scholar 

  81. City of Willard,Waste Water Treatment Plant, Web Page www.willardohio.com/wwtp.htm (2004).

    Google Scholar 

  82. US Filter, EnvirexProducts, Wastewater Treatment-Biological Treatment, Web Page address www.usfilterenvirex.com/products/wastewater/biological.html (2004).

    Google Scholar 

  83. U.S. ACE,Civil Works Construction Cost Index System Manual, US Army Corps of Engineers, Washington, DC, PP 44, (2008-Tables) (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer ScienceCBusiness Media, LLC

About this chapter

Cite this chapter

Shammas, N.K., Wang, L.K. (2009). Emerging Suspended-Growth Biological Processes. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Advanced Biological Treatment Processes. Handbook of Environmental Engineering, vol 9. Humana Press. https://doi.org/10.1007/978-1-60327-170-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-170-7_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-360-2

  • Online ISBN: 978-1-60327-170-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics