Skip to main content

Detection of β-Catenin Localization by Immunohistochemistry

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 468))

Abstract

β-catenin is a widely expressed 90-kDa protein with dual functions in cell adhesion and Wnt signalling. At the membrane, β-catenin forms complexes with E-cadherin to generate cell adhesion complexes responsible for maintaining the structural integrity of many epithelial tissues. On the other hand, accumulation of β-catenin in the nucleus in response to Wnt signalling facilitates complex formation with Tcf transcription factors, leading to activation of a genetic program influencing a range of cellular processes including cell growth, cell movement, and cell fate. Chronic activation of the Wnt signalling pathway as a result of mutations in key pathway components, including β-catenin itself, is a major cause of cancer. The associated increase in nuclear β-catenin protein is therefore considered to be a hallmark of Wnt-driven cancers and an invaluable tool to detect active Wnt signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.

    Article  CAS  PubMed  Google Scholar 

  2. Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., et al. (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399.

    Article  CAS  PubMed  Google Scholar 

  3. van de Wetering, M., Cavallo, R., Dooijes, D., van Beest, M., van Es, J., Loureiro, J., et al. (1997) Armadillo coactivates transcription driven by the product of the Dro-sophila segment polarity gene dTCF. Cell 88, 789–799.

    Article  Google Scholar 

  4. Barker, N. and Clevers, H. (2006) Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug. Discov. 5, 997–1014.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barker, N., Born, M.v.d. (2008). Detection of β-Catenin Localization by Immunohistochemistry. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology™, vol 468. Humana Press. https://doi.org/10.1007/978-1-59745-249-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-249-6_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-912-3

  • Online ISBN: 978-1-59745-249-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics