Skip to main content

Detection of Sumoylated Proteins

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 368 Accesses

Abstract

Small ubiquitin—related modifier (SUMO) was discovered as a modifier of mammalian proteins in 1997 (1–2). SUMO has since been demonstrated to be a modifier of many important proteins, giving this modification a vital role in modulating a large number of important cellular processes (3–5). SUMO proteins are very similar to ubiquitin structurally, but sumoylation does not promote degradation of proteins and instead regulates key functional properties of target proteins. These properties include subcellular localization, protein partnering, and transactivation functions of transcription factors, among others (3–5). Protein sumoylation plays a particularly vital role in regulating many important processes occurring in the nucleus, and although sumoylation can be found on proteins that exist in a number of cellular compartments, most of the sumoyla-tion characterized to date occurs on nuclear proteins (3–5). Indeed, proteins of the SUMO conjugation machinery have been found to be localized to nuclear pore complexes, in addition to other locations in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107.

    Article  CAS  PubMed  Google Scholar 

  2. Matunis, M. J., Wu, J., and Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140, 499–509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mukhopadhyay, D. and Dasso, M. (2007) Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286–295.

    Article  CAS  PubMed  Google Scholar 

  4. Bossis, G. and Melchior, F. (2006) SUMO: regulating the regulator. Cell Div. Jun 29, 1–13.

    Google Scholar 

  5. Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006) Modification of Proteins by Ubiquitin and Ubiquitin-Like Proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, E.S., Schwienhorst, I., Dohmen, R.J., and Blobel, G. (1997) The ubiqui-tin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/ Uba2p heterodimer. EMBO J. 16, 5509–5519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Desterro, J.M., Rodriguez, M.S., Kemp, G.D., and Hay, R.T. (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618–10624.

    Article  CAS  PubMed  Google Scholar 

  8. Gong, L., Li, B., Millas, S., and Yeh, E.T. (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448, 185–189.

    Article  CAS  PubMed  Google Scholar 

  9. Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N., and Yasuda, H. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun. 254, 693–698.

    Article  CAS  PubMed  Google Scholar 

  10. Desterro, J.M., Thomson, J., and Hay, R.T. (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417, 297–300.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson, E.S. and Blobel, G. (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799–26802.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez, M.S., Dargemont, C., and Hay, R.T. (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659.

    Article  CAS  PubMed  Google Scholar 

  13. Sampson, D.A., Wang, M., and Matunis, M.J. (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669.

    Article  CAS  PubMed  Google Scholar 

  14. Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374.

    Article  CAS  PubMed  Google Scholar 

  15. Goodson, M.L., Hong, Y., Rogers, R., Matunis, M.J., Park-Sarge, O.K., and Sarge, K.D. (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J. Biol. Chem. 276, 18513–18518.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Mike Matunis (Johns Hopkins), Ron Hay (University of St. Andrews), and Chris Lima (Sloan Kettering Institute) for providing constructs and reagents.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Park-Sarge, OK., Sarge, K.D. (2009). Detection of Sumoylated Proteins. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_158

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-198-7_158

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-474-6

  • Online ISBN: 978-1-59745-198-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics