Skip to main content

Immobilized Enzymes for Biomedical Applications

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 22))

Abstract

Immobilized enzymes were first applied in the biomedical field aiming to detect bioactive substances or to treat a disease condition. This chapter presents two approaches used for the immobilization of L-asparaginase intended for the treatment of leukemia, based on the entrapment of this enzyme in a matrix. The particulate drug carriers described in this chapter are liposomes and nanoparticles, even though the methods described here could be used for the immobilization of other enzymes with therapeutic uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang J. F., Li Y. T., and Yang V. V. (2000) Biomedical application of immobilized enzymes. J. Pharm. Sci. 89, 979–990.

    Article  CAS  Google Scholar 

  2. Torchilin V. P. (1987) Immobilised enzymes as drugs. Adv. Drug Del. Rev. 1, 41–86.

    Article  CAS  Google Scholar 

  3. Lizano C., Pérez M. T., and Pinilla M. (2001) Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation: in vivo survival rate in circulation, organ distribution and ethanol degradation. Life Sci. 68, 2001–2016.

    Article  CAS  Google Scholar 

  4. Lizano C., Sanz S., Luque J., and Pinilla M. (1998) In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. BBA—Gen. Subjects 1425, 328–336.

    Article  CAS  Google Scholar 

  5. Gaspar M. M., Blanco D., Cruz M. E. M., and Alonso M. J. (1998) Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Rel. 52, 53–62.

    Article  Google Scholar 

  6. Cruz M. E. M., Gaspar M. M., Lopes F., Jorge J. S., and Perez-Soler R. (1993) Liposomal L-asparaginase: in vitro evaluation. Int. J. Pharm. 96, 67–77.

    Article  CAS  Google Scholar 

  7. Avrami V. I., Sencer S., Periclou A. P., et al. (2002) A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a children’s cancer group study. Blood 99, 1986–1994.

    Article  Google Scholar 

  8. Balcão V. M., Mateo C., Fernández-Lafuente R., Malcasa F. X., and Guisán J. M. (2001) Structural and functional stabilization of L-asparaginase via multisubunit immobilization onto highly activated supports. Biotechnol. Prog. 17, 537–542.

    Article  Google Scholar 

  9. Hershfield M. (1995) PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin. Immunol. Immunopathol. 76, 228–232.

    Article  Google Scholar 

  10. Ensor C. M., Bomalaski J. S., and Clark M. A. (2002) PEGylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62, 5443–5450.

    CAS  Google Scholar 

  11. Löhr M., Hummel F., Faulmann G., et al. (2002) Microencapsulated, CYP2B1-transfected cells activating ifosfamide at the site of the tumor: the magic bullets of the 21st century. Cancer Chemother. Pharmacol. 49, S21–S24.

    Google Scholar 

  12. Belchetz P. E., Crawley J. C. W., Braidman I. P., and Gregoriadis G. (1977) Treatment of Gaucher’s disease with liposome-entrapped glucocerebroside: β-glucosidase. Lancet 310, 116–117.

    Article  Google Scholar 

  13. Korablyov V., Zimran A., and Barenholz Y. (1999) Cerebroside-β-glucosidase encapsulation in liposomes for Gaucher’s disease treatment revisited. Pharm. Res. 16, 466–469.

    Article  CAS  Google Scholar 

  14. Storm G., Vingerhoeds M. H., Crommelin D. J. A., and Haisma H. J. (1997) Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs. Adv. Drug Del. Rev. 24, 225–231.

    Article  CAS  Google Scholar 

  15. Hill K. J., Kaszuba M., Creeth J. E., and Jones M. N. (1997). Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. BBA-Biomembranes 1326, 37–46.

    Article  CAS  Google Scholar 

  16. Genta I., Perugini P., Pavanetto F., et al. (2001) Conti Enzyme loaded biodegradable microspheres in vitro: ex vivo evaluation. J. Control. Rel. 77, 287–295.

    Article  CAS  Google Scholar 

  17. Storm G., Koppenhagen F., Heeremans A., Vingerhoeds M., Woodle M. C., and Crommelin D. J. A. Novel developments in liposomal delivery of peptides and proteins. J. Control. Rel. 36, 19–24.

    Google Scholar 

  18. Santini B., Antonelli M., Battistini A., et al. (2000) Comparison of two enteric coated microsphere preparations in the treatment of pancreatic exocrine insufficiency caused by cystic fibrosis. Digest. Liver Dis. 32, 406–411.

    Article  CAS  Google Scholar 

  19. Patchell C. J., Desai M., Weller P. H., et al. (2002) Creon® 10000 MinimicrospheresTM vs. Creon® 8000 microspheres—an open randomised crossover preference study. J. Cystic Fibrosis 4, 287–291.

    Article  Google Scholar 

  20. Petrikovics I., Hong K., Omburo G., et al. (1999) Antagonism of paraoxon intoxication by recombinant phosphotriesterase encapsulated within sterically stabilized liposomes. Toxicol. Appl. Pharm. 156, 56–63.

    Article  CAS  Google Scholar 

  21. Chang T. M. S., Bourget L., and Lister C. (1995) A new theory of enterorecirculation of amino acids and its use for depleting unwanted amino acids using oral enzyme artificial cells, as in removing phenylalanine in phenylketonuria. Art. Cells Blood Subs. Immob. Biotech. 23, 1–21.

    Article  CAS  Google Scholar 

  22. Bourget L. and Chang T. M. S. (1985) Phenylalanine ammonia-lyase immobilized in semipermeable microcapsules for enzyme replacement in phenylketonuria. FEBS Lett. 180, 5–8.

    Article  CAS  Google Scholar 

  23. Liang J. F., Li Y. T., and Yang V. C. (2000) A novel approach for delivery of enzyme drugs: preliminary demonstration of feasibility and utility in vitro. Int. J. Pharm. 202, 11–20.

    Article  CAS  Google Scholar 

  24. Wolfe E. A. and Chang T. M. S. (1987) Orally ingested microencapsulated urease and an adsorbent, zirconium phosphate, to remove urea in kidney failure. Int. J. Artif. Org. 10, 269–274.

    CAS  Google Scholar 

  25. Prakash S. and Chang T. M. S. (1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med. 2, 883–887.

    Article  CAS  Google Scholar 

  26. Tischer W. and Kasche V. (1999) Immobilized enzymes: crystals or carriers?. Trends Biotechnol. 17, 326–335.

    Article  CAS  Google Scholar 

  27. Vina I., Karsakevich A., and Bekers M. (2001) Stabilization of anti-leukemic enzyme L-asparaginase by immobilization on polysaccharide levan. J. Mol. Catal. B: Enzym. 11, 551–558.

    Article  CAS  Google Scholar 

  28. Roberts M. J., Bentley M. D., and Harris J. M. (2002) Chemistry for Peptide and Protein PEGylation. Adv. Drug Deliv. Rev. 54, 459–476.

    Article  CAS  Google Scholar 

  29. Kodera Y., Matsushima A., Hiroto M., et al. (1998) Pegylation of proteins and bioactive substances for medical and technical applications. Prog. Polym. Sci. 23, 1233–1271.

    Article  CAS  Google Scholar 

  30. Vellard M. (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr. Opin. Biotech. 14, 444–450.

    Article  CAS  Google Scholar 

  31. Neerunjun E. F. and Gregoriadis G. (1976) Tumor regression with liposome-entrapped asparaginase: some immunological advantages. Biochem. Soc. T. 4, 133–134.

    CAS  Google Scholar 

  32. Panyam J. and Labhasetwar V. (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Del. Rev. 55, 329–347.

    Article  CAS  Google Scholar 

  33. Graham M. L. (2003) Pegaspargase: a review of clinical studies. Adv. Drug Del. Rev. 55, 1293–1302.

    Article  CAS  Google Scholar 

  34. Müller H. J. and Boos J. (1998) Use of L-asparaginase in childhood ALL. Crit. Rev. Oncol. Hemat. 28, 97–113.

    Article  Google Scholar 

  35. Duval M., Suciu S., Ferster A., et al. (2002) Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer—Children’s Leukemia Group phase 3 trial. Blood 99, 2734–2739.

    Article  CAS  Google Scholar 

  36. Alvarez O. A. and Zimmerman G. (2000) Pegaspargase-induced pancreatitis. Med Pediatr. Oncol. 34, 200–205.

    Article  CAS  Google Scholar 

  37. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  38. Jayaram H. N., Cooney D. A., and Jayaram S. (1974) A simple and rapid method for the estimation of L-asparaginase in chromatographic and electrophoretic effluents: comparison with other methods. Anal. Biochem. 59, 327–346.

    Article  CAS  Google Scholar 

  39. Rouser G., Flusher S., and Yamamoto A. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494–496.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Esquisabel, A., Hernández, R.M., Gascón, A.R., Pedraz, J.L. (2006). Immobilized Enzymes for Biomedical Applications. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics