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1. CHEMOKINES: OVERVIEW 

Chemokines are chemoattractant cytokines that stimulate directional migration of 
inflammatory cell in vitro and in vivo. Because of this, chemokines can be included into 
a large group of cytokines involved in the pathogenesis of inflammatory processes. All 
chemokines were identified within the last 20 yr and our knowledge about their roles in 
biology is rapidly growing. At present, an enormous amount of literature about chemo­
kines and chemokine receptors is published each year. 

There are now more than 50 different chemokines described in the literature. They 
are virtually all 8- to lO-kDa proteins with 20-70% homology in amino acid sequence. 
Chemokines are divided according to their structure into four main subfamilies: XCL, 
CCL, CXCL, and CX3CL. The criterion is the presence or absence of intervening amino 
acids between the first two cysteines near the N-terminus. If these cysteines are adjacent, 
the chemokine belongs to the CCL subfamily. The presence of one or three separating 
amino acids assigns the chemokine to the CXCL or CX3CL subfamily. The XCL sub­
family possesses only one cysteine at the N-terminus. The CX3CL subfamily comprises 
only one chemokine: fractalkine. The XCL subfamily includes two chemokines: XCLl 
(lymphotactin) and XCL2 (SCMl). The two other chemokine subfamilies, CXCL and CCL, 
are much larger and can be further subdivided. The CXCL family consists of at least 16 
members, CCL is even larger-at least 28 members identified to date. The criterion for 
further division of the CXCL subfamily is the presence of the ELR motif (glutamate­
leucine-arginine) near the N-terminus. This subdivision also has functional significance. 
Chemokines with the ELR motif attract neutrophils, whereas non-ELR CXC chemo­
kines attract predominantly mononuclear inflammatory cells: monocytes and lymphocytes. 
CC chemokines can also be subdivided further into monocyte chemoattractant proteins 
(MCP-I-5) and others (1). 

Originally described as chemoattractant factors, chemokines turned out to be involved 
also in a large diversity of other physiological and pathological processes. They can not 
only guide leukocytes to inflammatory sites but also activate target cells at sites of injury. 
ELR-positive CXC chemokines (interleukin [IL]-8, GRO possess angiogenic activity, 
whereas ELR-negative interferon-inducible protein [IP-lO], Mig) are angiostatic. Sev­
eral chemokines may also induce smooth-muscle proliferation and induce cytokine pro­
duction in lymphocytes (2). 
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2. CHEMOKINE RECEPTORS 

Chemokines influence their target cells through chemokine receptors, which belong 
to seven transmembrane domain receptors signaling through the G-protein system. 
The homology between chemokine receptors is between 25% and 80% (3). There are 
11 chemokine receptors described so far for CC chemokines (CCRl-11), 6 for CXC 
chemokines (CXCRl-6), and 1 for each CX3C and C chemokine (XCRI and CX3CRl, 
respectively). The interactions between chemokines and their receptors are complex 
and significant redundancy in this system is observed. It is frequently observed that 
multiple chemokines can bind to single chemokine receptor and that several chemokine 
receptors can respond to an individual chemokine ligand. Several chemokine receptors 
provide exceptions to this rule and are "monogamous." In general, chemokine receptors 
do not respond to ligands from distinct subfamilies. These properties resulted in the divi­
sion of chemokine receptors into four main functional groups: shared, specific, promis­
cuous, and viral (4). The examples of specific receptors are CXCR5 (ligand BCA-l), 
CCR6 (ligand MIP-3a), and CCR9 (ligand TECK). The cardinal example of a promis­
cuous chemokine receptor is Duffy antigen receptor for chemokines (DARC), which is 
expressed mainly on erythrocytes and postcapillary venules. Because it does not signal 
and is present abundantly on circulating erythrocytes, it was suggested that this recep­
tor may serve as a "sink for chemokines," eliminating excess and promoting maintenance 
of chemokine gradient (5). The last group of chemokine receptors are virus-encoded 
receptors. Their biological role(s) is not known. The most plausible hypothesis is that 
viruses "pirated" chemokine receptors to degrade host defenses during infection. In 
addition to virus-encoded chemokine receptors, some viruses also encode chemokine 
homologs and chemokine-binding proteins, presumably to achieve the same goals dur­
ing infection (6). 

Chemokine receptors are present mainly on blood inflammatory cells (leukocytes). 
Some of them may be constitutively expressed like CCR2 on monocytes; others (like 
CCR5 on lymphocytes) have to be upregulated by inflammatory stimuli (e.g., IL-2) (7). 
It was also recently shown that the division of acivated T-helper lymphocytes (Th) 
cells into pro-inflammatory Thl and anti-inflammatory Th2 cells is also reflected by 
the expression of a different spectrum of chemokine receptors. Thl cells express mainly 
CCRl, CCR5, and CXCR3 receptors, whereas Th2 predominantly CCR3, CCR4, and 
CCR8 (8). Our knowledge about chemokine receptors increased significantly after the 
discovery that the human immunodeficiency virus (HIV) uses CCR5, CXCR4, and many 
other chemokine receptors as coreceptors for invasion of T -cells and monocytes. 

Chemokine binding to chemokine receptors initiates upregulation of inositol triphos­
phate and intracellular calcium flux. Moreover, the activation of Ras and Rho families 
is induced. The Rho family plays a role in the formation of pseudopods involved in direc­
tional migration of inflammatory cells (9). 

3. CHEMOKINES AND LEUKOCYTE EXTRAVASATION 

Chemokines are produced at tissue sites of inflammation by parenchymal cells that 
thereby induce the migration of inflammatory cells from the blood. Moreover, chemo­
kines are produced by migrating leukocytes, thus augmenting the inflammatory pro­
cess. The extravasation of leukocytes and their accumulation in an inflamed region is a 
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complicated and multistep process. It is initiated by adhesion molecules (i.e., selectins 
expressed on endothelium and leukocytes that interact with their carbohydrate recep­
tors). This interaction causes leukocyte "rolling" on endothelium. At this stage, another 
group of adhesion molecules, integrins, initiate firm attachement of leukocytes to endo­
thelium and their exposure to chemokine gradient. This signal stimulates transmigra­
tion of inflammatory cells from the vessel lumen to inflamed tissue. Chemokines play 
an important role during the extravasation step of this process, but they are also required 
to activate integrins and initiate leukocyte arrest and, in this way, accelerate the pro­
cess of transmigration. Expression of specific sets of chemokines in an inflammatory 
region is responsible for the cellular composition of inflammatory foci. 

The inflammatory process in the central nervous system (CNS) has unique features 
not seen in the periphery. The most important difference is the presence of the blood­
brain barrier (BBB), which is composed of the nonfenestrated cerebrovascular endothe­
lium sealed by tight junctions. Inflammatory cells migrating to the CNS must first penetrate 
the BBB and accumulate in perivascular/subarachnoid space (10). Under physiologi­
cal conditions, only activated T -cells penetrate this barrier during the process of immu­
nological surveillance of the CNS (11). Inflammation of immunological origin starts when 
patrolling T-cells encounter cognate antigen within the CNS parivascular space (12). 
As a result, pro inflammatory cytokines are produced by both T -cells and perivascular 
macrophages, stimulating CNS parenchymal cells to express chemokines (see Section 
4). Astrocyte-derived chemokines may influence the BBB endothelium and attract anti­
gen-nonspecific inflammatory cells to the nascent site of inflammation (13). Inflammatory 
responses in the CNS also result from diverse other types of injury, including infection 
and mechanical, physical, chemical, and ischemic damage. Regardless of its origin, this 
response is usually characterized by chemokine overexpression (see Section 5). 

4. EXPRESSION OF CHEMOKINES BY CNS CELLS IN VITRO 

Although inflammatory leukocytes are the principal producers of chemokines and 
bearers of their receptors, cells of neural origin are also able to express chemokines 
and chemokine receptors. Initial studies showed that human glioma cell lines produce 
MCP-l and IL-8 (14,15). Cultured astrocytes stimulated with tumor necrosis factor-a 
(TNF-a) and transforming growth factor (TGF-~) express MCP-l at both mRNA and 
protein levels (16) and astrocytoma cells stimulated with interferon-y (IFN-y) produce 
MCP-l (17). Stimulated astrocytes are also able to express monocyte inflammatory pro­
tein (MIP)-la, MIP-l~, RANTES, and IP-IO (18-20). Infection of cultured astrocytes 
with paramyxovirus NDV stimulates expression of IP-l 0 and RANTES (21), and HIV-l 
infection stimulates expression ofIL-8 and IP-IO in affected astrocytes (22). Infection of 
cultured human astrocytes with neurotropic coronavirus OC43 leads to increased expres­
sion of cytokines IL-6 and TNF-a, as well as chemokine MCP-l (23). 

Microglial cells (especially after stimulation) have been also shown to be potent sources 
of some chemokines. After stimulation with IL-6 and colony-stimulating factor-l (CSF-l) 
brain macrophages express MCP-l (24). Other inflammatory cytokines like TNF-a and 
IL-l~ and lipopolysaccharide (LPS) may stimulate cultured microglia to produce MCP-l, 
MIP-la, and MIP-l~ (25), IL-8 (26), and RANTES (27). It has been also shown that 
some infectious agents may stimulate overexpression of chemokines by microglia. For 
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example, the simian immunodeficiency (SIV) virus (28) and cryptococcal polysaccha­
ride (29) can induce expression of IL-8 in cultured microglia. 

Cultured brain endothelial cells can express MCP-l spontaneously and this expres­
sion increases after stimulation with TNF-a (30). It has been recently shown that cultured 
human cerebromicrovascular endothelial cells are able to express genes for MCP-l and 
IL-8 when stimulated by hypoxic astrocytes, mediated by IL-l~ (31). Brain microvas­
cular endothelial cells may express CXCR2 as well (32). Parasitic infection of cultured 
brain endothelium stimulates expression of IL-8 (33). Mixed human brain cell cultures 
stimulated with TNF-a expressed RANTES and MIP-I~ (34). 

Chemokine receptors have also been found to be expressed on CNS cells in vitro and 
in vivo. Numerous studies showed that cultured astrocytes can express CXCR4, CX3CRl, 
CCRl, CCRIO, and CCRII (35-37). In our studies, TGF-~l, but not IFN-,¥, TNF-a, and 
LPS was able to stimulate primary mouse astrocytes to upregulate selectively CCRI in 
vitro (38). In the same model, TNF-a was a potent supressor of CXCR4 expression at 
the mRNA and protein levels (39). 

Microglia can express CCR3, CCR5, CXCR4, and CX3CRl in vitro (36,40,41). Cul­
tured human neurons were shown to express CCRl, CCR5, CXCR2, and CXCR4 (42). 
Another group showed that cultured human fetal neurons and the human neuronal cell 
line NT2.N can express CCR2,CXCR2, CXCR3 and CXCR4 at the mRNA and protein 
levels. Additionally, it has been shown in those studies that NT2.N neurons may pro­
duce chemokine MCP-l (43). 

5. GENETICALLY PROGRAMMED 
OVEREXPRESSION OF CHEMOKINES IN CNS IN VIVO 

Studies on chemokine expression under the control of CNS-specific promoters showed 
accumulation of appropriate subsets of leukocytes in this organ. These observations 
indicate that chemokines are potent inducers of selective recruitment of leukocyte sub­
populations from the blood to the CNS in vivo. Transgenic mice expressing MCP-l 
under control of the oligodendrocyte-specific MBP promoter exhibited selective mono­
cyte accumulation in CNS perivascular spaces (44). Intraperitoneal injection with LPS 
augmented this accumulation. Despite massive inflammatory infiltrates, transgenic mice 
did not show any evident neurological and behavioral deficits (44). In another study, trans­
genic mice expressing chemokine KC in oligodendrocytes massive accumulation of neu­
trophils was found. The peak of this expression was observed between 2 and 3 wk of age 
in perivascular, meningeal, and parenchymal sites ofCNS tissue (45). Those mice devel­
oped delayed (beginning from 40 d of age) neurological syndrome of postural instabil­
ity and rigidity. Neuropathological analysis showed BBB disruption and microglial 
activation (45). 

Those observations suggested that chemokines may selectively recruit specific sub­
popUlations of inflammatory cells to the CNS and that this chemokine-driven recruitment 
is not invariably linked to leukocyte activation. 

6. CHEMOKINES IN INFECTIOUS NEUROINFLAMMATION 

Chemokines are important players in the formation of the inflammatory response 
of an organism to infectious challenge. Although neuroinflammation is characterized 
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by certain unique features (when compared to inflammation in other organs), other essen­
tial characteristics of inflammatory responses are conserved. One conserved mecha­
nism is localized production of chemoattractant agents at sites of inflammation. In an 
early study analyzing chemokine involvement in the pathogenesis of experimental 
pneumococcal meningitis, Saukkonen and co-workers observed that intracisternal admin­
istration of antibodies blocking MIP-la, MIP-l~, and MIP-2 during induction of the 
diseases delayed the onset of inflammation (46). In brains from mice with encephalo­
myelitis induced by Listeria, expression of genes for MIP-la, MIP-l~, and MIP-2 was 
also detected (47). This expression was mainly localized in neutrophils accumulating 
in lateral and third ventricles starting from 12 h after disease induction. The highest level 
of MIP-l a and MIP-2 in corresponding cerebrospinal fluid (CSF) was found by enzyme­
linked immunosorbent assay (ELISA) at 48-72 h postinfection (47). 

Many studies analyzed the level of chemokines in the CSF from patients with menin­
gitis of different origins. It has been reported that there is a correlation between IL-8 and 
GRO-a levels and granulocyte counts in the CSF from patients with bacterial meningitis 
and between MCP-l CSF levels and mononuclear cell counts in CSF from patients with 
nonbacterial meningitis (48). Others observed a correlation between IL-8 concentration 
in CSF and neutrophil counts in patients with nonpyogenic meningitis (49). In patients 
with pneumococcal, meningococcal, and Haemophilus injluenzae bacterial meningitis, 
MCP-l, IL-8, and GRO-a, as well as also levels ofMIP-la and MIP-l~ were elevated 
in the CSF (50). This observation was extended by studies showing diminished migra­
tion of neutrophils after addition to the CSF of anti-IL-8 and anti-GRO-a antibodies. 
Migration of mononuclear cells was reduced in the same system by anti-MIP-l a, anti­
MIP-l~, and anti-MCP antibodies (50). A recent study analyzing the development of 
experimental brain abscess after embolization of Staphalococcus aureus beads showed 
involvement of chemokines in that process. Increased expression of neutrophil chemo­
attractant KC was detected 24 h after infection, whereas MCP-l and MIP-l a were over­
expressed in the brain within 24 h after bacterial exposure (51). 

Viral infections of the CNS parenchyma were also shown to be connected with increased 
chemokine levels in the CSF. In encephalitis caused by SIV, a primate model of human 
AIDS encephalitis, increased expression ofMIP-l a, MIP-l~, MCP-l, MCP-3, RANTES, 
and IP-lO was detected (52). Lymphocytic choriomeningitis infection led to increased 
expression of genes for MCP-l, MIP-l~, RANTES, IP-IO, and MCP-3 in the brains of 
infected mice by 3 d after infection. A later increased expression ofC-lO, MIP-2, MIP­
la and lymphotactin was observed (53). In encephalomyelitis caused by mouse hepati­
tis virus (MHV), increased expression of MIP-I a, MIP-2, IP-l 0, MCP-l, and RANTES 
was detected in the infected brain and spinal cord. Astrocytes expressed IP-lO in that 
model (54). It has been proposed recently that Mig contributes significantly to the clear­
ance of MHV CNS infection, as mice treated with anti-Mig antisera had much more 
severe disease. In the treated group, accumulation of CD4+ and CD8+ T -cells and expres­
sion ofIFN-y in the brain were significantly decreased (55). 

Increased expression of MIP-I a, MIP-l~, IP-l 0, MCP-l, and RANTES was present 
in murine brain during fatal hemorrhagic encephalopathy induced by infection with 
mouse adenovirus type-l (MAV-I) (56). The same infection caused increased upregu­
lation of chemokine receptors CCRl-5 in BALB/c and C57BLl6 mice (57). In dogs 
infected by canine distemper virus (CDV), an increased level of IL-8 was observed in 
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the CSF (58). During meningoencephalitis induced by infection with the Borna disease 
virus (BOV), astrocytes were shown to express mRNA for IP-I0 (59). Theiler's virus 
model of multiple sclerosis (MS) was characterized by biphasic overexpression of che­
mokines IP-lO, MCP-l, and RANTES, first during the acute inflammatory stage ofthe 
disease and, later, during demyelinating stage of infection (60). 

In brains from patients with HIV encephalitis, MCP-l, MIP-l a, and RANTES were 
detected on macrophages (61). Moreover, in brains from patients with HIV -associated 
dementia, in which monocytic infiltration of the CNS is present, increased levels of 
MCP-l were detected in brains and CSF (62). The human T-celllymphotrophic virus 
type-l (HTL V -1) virus causes chronic progressive myelopathy with neurological and path­
ological features similar to progressive MS. Expression of MCP-l has been observed in 
spinal cord lesions present in that disease (63). Moreover, HTL V -1 -specific T-cell clones 
from patients with this myelopathy may express chemokines MIP-l a and MIP-l ~ (64). 

Additional information showing involvement of chemokines in infectious neuro­
inflammation was obtained by studying mice with disrupted chemokine and chemokine 
receptor genes. MIP-la knockout mice infected with neurotropic fungus Cryptococcus 
neoformans had decreased leukocyte recruitment to the brain and impaired cryptococcal 
clearance from the brain (65). In the CSF from patients with Cryptococcal meningitis, 
an increased level of IL-8 was found (29). 

7. CHEMOKINES IN IMMUNE-MEDIATED NEUROINFLAMMATION 
The best characterized experimental neuroinflammation of immunological origin is 

experimental autoimmune encephalomyelitis (EAE). This disease can be induced in 
susceptible strains oflaboratory animals (mice, rats, guinea pigs, monkeys) by immuni­
zation with CNS myelin protein antigens like myelin basic protein (MBP), proteolipid 
protein (PLP), and myelin oligodendrocyte glycoprotein (MOG). EAE is an example of 
autoimmune inflammation of the CNS and is characterized by the presence of dissemi­
nated inflammatory "cuffs" around microvessels of the brain and spinal cord. EAE is 
considered to be a useful animal model of certain aspects of the human demyelinating 
disease MS. Both diseases share similar pathological features, although the autoimmune 
origin of MS has not been rigorously proven yet. 

Initial descriptive reports showed that expression of some chemokines (MCP-l, IP-I0) 
occurs during early stages ofEAE (66,67) and those chemokines are expressed by astro­
cytes in the vicinity of inflammatory lesions (67). Later, the expression of additional che­
mokines (MIP-la, MIP-l~, RANTES, KC, MCP-3, TCA-3, fractalkine, MCP-5) was 
detected during acute EAE(68-70). Our results showed that chemokine expression by 
parenchymal astrocytes during EAE do not initiate, but amplify, the ongoing CNS inflam­
matory process (13). A correlation among MIP-la, RANTES, and GRO-a expression 
and intensity ofCNS inflammation was also reported (71). A functional study found that 
the blockade ofMIP-la expression by antibody prevented the appearance of passively 
transferred acute EAE (72). However, mice with knockout ofMIP-la and its receptor 
CCR5 were fully susceptible to MOG-induced EAE, showing the complexity of this sub­
ject (73). Lately, in a variant ofEAE in BALB/c mice characterized by pronounced neu­
trophil accumulation, increased expression ofMIP-2 (chemokine-attracting neutrophils) 
as well as MIP-la and MCP-l was reported. Astrocytes were the main cellular source 
of MIP-2 and MIP~la; infiltrating neutrophils expressed MIP-la and MCP-l (74). 
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In chronic relapsing EAE (ChREAE), characterized by the spontaneous appearance of 
clinical relapses of the disease, we observed overexpression of chemokines MCP-I, IPI 0, 
GRO-a, MIP-Ia, and RANTES concomittant with relapse. Astrocytes were the pro­
ducers of MCP-I, IP-I 0, and GRO-a, whereas infiltrating inflammatory cells expressed 
RANTES and MIP-Ia (75). Anti-MCP-I, but not anti-MIP-Ia, antibody was shown to 
significantly reduce the severity of relapses in ChREAE (76). Recently, mice lacking 
the MCP-I gene were shown to be markedly resistant to EAE induction and showed 
impaired recruitment of macrophages to the CNS (77). The expression of chemokines 
within the CNS parenchyma during EAE is probably driven by inflammatory cytokines 
produced by migrating inflammatory cells as supported by observations in IFN-yknock­
out mice (GKO) with EAE. In that model, we observed selectively diminished IP-lO 
expression, whereas non-IFN-y-dependent chemokines, MCP-I and GRO-a, were over­
expressed (78). 

In addition to chemokines, CNS expression of chemokine receptors CXCR2, CXCR3, 
CXCR4, CX3CRI, CCR2, CCR5, and CCR8 was increased during EAE (41,79). In 
ChREAE, the expression of CXCR2 and CXCR4 correlated with the appearance of new 
relapses (80). Protection from EAE induced with altered peptide ligand (APL) was shown 
to reduce levels of several chemokines and also CXCR2, CXCR3, CCRI, CCR5, and 
CCR8 (79). CCR6 and its ligand MIP-3a, a potent attractant of dendritic cells (DCs), 
were both upregulated in the CNS during EAE. In those studies, a prominent infiltra­
tion of mature DCs in the spinal cord of mice with acute and chronic EAE was described 
(81). Two recent publications showed that CCR2 plays a necessary role in the patho­
genesis of EAE. Mice with CCR2 knockout did not develop clinical EAE and failed to 
accumulate mononuclear inflammatory cells in the CNS. Moreover, they failed to 
upregulate RANTES, MCP-I, IP-lO, CCRI, CCR2, and CCR5 during EAE (82,83). 

Many reports have been published lately addressing chemokine expression in MS. 
Reassuringly, these results resemble those obtained earlier in EAE. Hvas and co-workers 
detected RANTES by in situ hybridization in perivascular inflammatory cells (84). In 
another study, MCP-I was localized in astrocytes and inflammatory cells and MIP-la 
and MIP-l~ in inflammatory cells in active MS plaques (85). Reactive astrocytes and 
inflammatory cells were also shown to express MCP-I, MCP-2, and MCP-3 in active 
MS lesions by others (86). Recently, our group reported increased levels of IP-lO, Mig, 
and RANTES in the CSF from patients with MS relapse (87). The receptorforIP-lO and 
Mig (CXCR3) was detected on CSF cells, as well as lymphocytes in perivascular inflam­
matory cuffs; the receptor for RANTES (CCR5) was present on lymphocytes, macro­
phages, and microglial cells in active MS lesions (87). Compatible results were published 
by others (88). Analysis of chemotactic activity of T-cells from MS patients showed 
increased migratory rate toward chemokines RANTES and MIP-l a. This aberrant migra­
tion could be diminished by anti-CCR5 antibodies (89). Moreover CCR2 and, to a smaller 
extent, CCR3 were detected in MS brains on CNS-infiltrating lymphocytes as well as on 
macrophages and microglia. Ligands for those receptors, MCP-I and MCP-3, were local­
ized around inflammatory foci (85). The same group reported Mig, IP-lO, and CXCR3 
expression in actively demyelinating lesions by macrophages and reactive astrocytes in 
periplaque CNS tissue (90). Treatment of remitting-relapsing MS with IFN-~ reduced 
RANTES production in sera- and blood-adherent mononuclear cells both in relapse 
and in remission (91). 
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8. CHEMOKINES IN TRAUMA TO THE NERVOUS SYSTEM 

Several types of physical CNS injury have been shown to be followed by increased 
expression of chemokines. MCP-l overexpression was observed after mechanical pene­
trating injury to the brain (92,93). Astrocytes in the vicinity ofthe injury site expressed 
MCP-l as early as a few hours after trauma (93). Expression of other chemokines studied 
in that model was not increased. We observed a strict correlation between MCP-l expres­
sion and the intensity of the inflammatory reaction in the brain. Out of four different 
injury models studied, the paradigm with the lowest intensity of inflammatory reaction 
(neonatal stab injury model) was typified by the lowest MCP-l expression (93). Other 
investigators showed increased expression of RANTES and MIP-l ~ 24 h after stab 
injury to the brain (94). Immunohistochemistry localized MIP-l~ in reactive astrocytes 
and macrophages at the site of injury, whereas RANTES was diffusely expressed in sur­
rounding necrotic tissue (94). Augmentation of mechanical cortical injury with LPS led 
to increased expression of several chemokines: MCP-l, MIP-l a, MIP-l~, RANTES, 
IP-lO, and KC (95). Antisense oligodeoxynucleotides that suppress MCP-l protein expres­
sion diminished the accumulation of macrophages at the site of stab injury to the rat 
brain (96). In a model of mechanical injury to the spinal cord, the expression ofMIP-la 
and MIP-l ~ was observed 1 d after injury diffusely in gray matter, later being present in 
inflammatory cells at the site of injury (97). In a precisely calibrated contusion injury 
to the spinal cord, increased expression of other chemokines was also reported. MCP-l 
»> MCP-5 = GRO-a = IP-lO = MIP-3a were expressed within hours after injury and 
pre-ceded influx of inflammatory cells to the site of injury (98). 

Another type of injury, cryolesion of the cerebral cortex, induced increased expres­
sion of MCP-l, with a peak at 6 h after trauma. Another chemokine analyzed in that 
model, IP-lO, was not overexpressed (99). During chemical injury to the CNS induced 
by triethyltin (TET) overexpression of MIP-l a was detected (100). It has been reported 
recently that MCP-l may be an important mediator of acute excitotoxic injury induced 
by N-methyl-D-aspartate in the neonatal rat brain (101). In the CSF from patients with 
severe brain trauma, the IL-8 concentration was significantly elevated. There was a clear 
correlation between the CSF IL-8 level and BBB disruption measured by the CSF/serum 
albumin ratio (102). 

9. CHEMOKINES IN ISCHEMIC INJURY TO THE NERVOUS SYSTEM 

Several studies have demonstrated that one consequence of CNS ischemia is increased 
expression of chemokines. Early experiments reported increased expression of MCP-l 
and MIP-la 6 h after onset of brain ischemia (103). In that study, endothelial cells and 
macrophages expressed MCP-l, whereas MIP-la was described in astrocytic cells ( 103). 
In another study, experimental middle cerebral artery occlusion (MCAO) also induced 
increased expression of MCP-l beginning 6 h after injury (104). Astrocytes provided the 
main cellular source of MCP-l after MCAO; later (after 4 d) MCP-l was expressed 
predominantly by macrophages and microglia at the ischemic area (105). Overexpression 
of MIP-la was detected in microglia localized in injured brain region after 4-6 h of 
ischemia (106). In the rat model of MCAO, CXC chemokine cytokine-induced neutro­
phil chemoattractant (CINC) was overexpressed after 12 h of ischemia (107). In the same 
model, increased expression of CXCR3 was observed and correlated with leukocyte 
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accumulation after focal brain ischemia (108). In a neonatal model of brain hypoxia-ische­
mia, the peak of MCP-l expression was detected at 8-24 h after the onset of ischemia and 
this expression returned to basal levels by 48 h (109). 

Pronounced reperfusion after focal brain ischemia may lead to additional brain dam­
age and is usually a result of the accumulation of neutrophils. Chemokines attracting 
neutrophils like IL-8 and CINC were shown to be upregulated after brain reperfusion 
(110). Blocking IL-8 with the antibody significantly reduced the size of infarcted brain 
tissue (110). In a rat forebrain reperfusion injury model, MCP-l expression was detected 
at the transcript level as early as 1 h after reperfusion (111). 

In patients with subarachnoid hemorrhage, MCP-l and IL-8 levels in the CSF were 
significantly increased compared with patients with unruptured aneurysms (112). 

10. CHEMOKINES IN NEURODEGENERATION 

In the course of neurodegenerative disorders, the BBB remains intact and migration of 
inflammatory cells from the blood to the CNS is not observed. Therefore, inflammatory 
cells detected during chronic neurodegenerative pathologies are CNS macrophages/ 
microglia. Chemokine and chemokine receptor expression was extensively studied in 
Alzheimer's disease (AD), the most common nerodegenerative disease causing demen­
tia. It has been shown that CXCR2 immunostaining is present in senile plaques and 
correlates with APP expression (113,114). Additionally, increased expression of CCR3 
and CCR5 in reactive microglia of AD brains was reported. In that study, MIP-l~ was 
detected in AD predominantly in reactive astrocytes (115). The same group reported 
overexpression ofIP-lO and its receptor CXCR3 in astrocytes in AD brains (116). Other 
authors observed increased expression of MCP-l in mature senile plaques and reactive 
microglia from patients with AD (117). Additional information from in vitro studies con­
firms the possible involvement of chemokines and their receptors in AD pathogenesis. 
~-Amyloid was shown to stimulate cultured brain macrophages to produce MCP-l (118) 
and astrocytoma cells for production of IL-8 (119). Interestingly, RANTES was shown 
to be neuroprotective when added to neuronal cultures exposed to toxic fragment of~­
amyloid peptide (120). 

In an experimental model of thalamic retrograde neurodegeneration induced by dam­
age to the cerebral cortex, rapid overexpression of MCP-l in a thalamus ipsilateral to 
injury was observed. This expression was localized by in situ hybridization to glial cells 
of the lateral geniculate nucleus (121). 

11. CHEMOKINES IN PERIPHERAL NERVOUS SYSTEM PATHOLOGY 

After axotomy in the peripheral nervous system, macrophages accumulate at the site 
of nerve transection. It has been hypothesized that this inflammatory reaction is the 
principal factor promoting regeneration of injured periperal nerve. It has been reported 
that expression of MCP-l preceded recruitment of macrophages to the injury region 
and was localized by in situ hybridization in Schwann cells (122). In a recent study 
analyzing chemokine expression in the experimental lesion of facial and hypoglossal 
nerves, MCP-l was expressed by damaged neurons. Expression of RANTES and IP-l 0 
as well as the MCP-l receptor CCR2 was not elevated (123). In a model of peripheral 
Wallerian degeneration induced in CCR2 knockout mice, a macrophage invasion after 



108 Glabinski and Ransohoff 

sciatic nerve transection was significantly impaired. In sciatic axotomy of CCR5-defi­
cient mice, this finding was not observed (124). 

An animal model of human Guillain-Barre polyneuropathy, experimental autoim­
mune neuritis (EAN) is characterized by the presence of mononuclear inflammatory cells 
(lymphocytes and macrophages) in affected nerves. It has been reported that MCP-l 
expression increases shortly before clinical signs of this disease (125). In another study 
in that model, the peak of MIP-I a and MIP-I ~ expression preceded maximum disease 
severity, whereas the maximum expression ofMCP-I, RANTES, and IP-lO was present 
at the time of peak of the disease. RANTES expression was localized within invading 
lymphocytes, and IP-I 0 was detected mainly in perineurial endothelium (126). In tri­
geminal ganglia from mice infected at least 5 d earlier with herpes simplex virus type I, 
increased expression of RANTES was found (127). 

12. CONCLUSIONS 

The data described in this review show that chemokines play important roles in 
diverse nervous system pathologies. Originally described as chemotactic agents, che­
mokines have recently been found to be crucial factors in damage to nervous tissue, as 
key mediators of inflammatory responses. Chemokine involvement has been reported 
in neuroinfections, autoimmune pathologies, neurotrauma after mechanical, physical, 
or chemical injury, and ischemia. Rapidly accumulating information about the extra­
inflammatory properties of chemokines has also impacted the neurosciences. Currently, 
chemokines and their receptors are considered to be important factors in neurodegen­
erative processes, nervous tissue development, and neuron-glia communication. One 
may expect that, in the near future, our knowledge in this area will expand further. How­
ever, even at present, chemokines can be considered important targets for new therapies, 
especially in neuroinflammatory conditions. 
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