
14

The evaluation of numerical software
for delay differential equations

W.H. Enright and H. Hayashi
University of Toronto
Department of Computer Science, Toronto M5S 9G4, Canada.
Telephone: +1-416-978-{2980,9965}. Fax: +1-416-978-1991.
Email: { enright , hiroshi }Gcs . toronto . edu

Abstract
We have been involved in the development and evaluation of software for initial value
problems in ordinary differential equations for several years. Experience gained in our
early testing and comparisons of nonstiff and stiff methods provided us with key insights
and motivation for the design and development of two software packages, NSDTST and
STDTST, that can be used for the evaluation of numerical methods for initial value
problems. These packages have been widely distributed and have proved to be particularly
valuable when assessing the relative advantages of various strategies or heuristics involved
in implementing a new method.

Recently we have developed a new approach for the numerical solution of delay dif­
ferential equations (DDEs) based on the use of continuous Runge-Kutta formulas. Iri
implementing our approach as a general purpose numerical method we recognized the
need for software tools, similar to those provided by the NSDTST package, that could
be used in the evaluation of numerical methods for DDEs. In this paper we will discuss
how we adapted and extended the NSDTST package so it could be used for this purpose.
We will present examples of how the resulting test package, DDETST, can be used to as­
sess different implementations of our approach for solving DDEs as well as other existing
general purpose methods.

Keywords
Software evaluation, delay differential equations, neutral equations, defect control

1 INTRODUCTION

For over two decades, at the University of Toronto we have been interested in the devel­
opment of effective numerical software for initial value problems in ordinary differential
equations. An important component of this ongoing activity has been the development of

R. F. Boisvert (ed.), Quality of Numerical Software
© IFIP International Federation for Information Processing 1997

180 Part II Testing and Evaluation Methodology

tools that can be used to assess the performance of an initial value method on a partic­
ular class of test problems. Two testing packages, NSDTST and STDTST (for assessing
methods suitable for nonstiff problems and stiff problems respectively), are described in
Enright and Pryce (1987). In developing these assessment tools we attempted, as much as
possible, to ensure that the package's monitoring of a problem's solution does not itself
inhibit (or affect) the performance. A consequence of this is that one must be careful when
comparing different methods on the basis of the assessments determined by the testing
packages (as no attempt is made to ensure that methods are 'doing the same thing'). To
address this inherent difficulty, the packages provide, as an option) the ability to produce
'normalized efficiency statistics' which are more appropriate for use when comparing the
performance of different methods.

Recently we have become interested in the analysis and development of methods for
delay differential equations (DDEs). Advances in the area of continuous Runge-Kutta
methods for initial value problems (see for example Enright, Jackson, N121rsett and Thom­
sen (1986), Dormand and Prince (1986) and Shampine (1985)) have provided a natural
approach that can be followed to develop effective methods for DDEs. In carrying out the
implementation component of this research we have developed a testing package, based on
the structure and design of NSDTST, that can be used for the evaluation and assessment
of numerical methods for DDEs. In this paper we will discuss the design decisions and
implementation issues that we addressed as well as give examples of how the final package
DDETST can be effectively used.

The first issue that one must address when considering the assessment of methods for
DDEs is the identification and classification of suitable problems that a 'general purpose
method' can be expected to solve. In the case of initial value problems in ODEs it is
generally accepted that there are two classes of general purpose methods-those suitable
for nonstiff problems and those suitable for stiff problems. For DDEs there is no such
consensus. Delay problems can be partitioned into categories depending on a number of
different factors and the relative effectiveness of a particular method can be very sensitive
to the partitioning. We will consider systems of equations with the possibility of multiple
delays in the solution or derivative values. That is, problems of the form

y' f(t,y(t),y(t-ul), .. ·,y(t-uk),
y'(t- uk+!), · · ·, y'(t - Uk+t)), for to ::=;: t ::=;: tF,

y(t) = cfJ(t), y'(t) = c/J'(t), t ::=;: t0,
(1)

where Ui = ui(t, y(t)) 2: 0 fori= 1, 2, · · ·, k +land y(t) ERn. When l = 0 the problem
is considered a retarded differential equation (RDE) and when l > 0 it is a neutral
differential equation (NDE).

A general purpose method for solving problems of this form must, in order to sample
the differential equation, be capable of approximating the true solution y(t) and the
derivative y'(t) at any point t E (t0, tF). That is, there must be an underlying continuous
differentiable approximation to y(t) associated with the numerical method. If z(t) is this
underlying continuous approximation to y(t) then z(t) should 'almost satisfy' (1) and we
can associate a defect, 5(t), with z(t) by

5(t) = z'(t)- f(t, z(t), z(t- u1), · · ·, z(t- uk), z'(t- uk+l), · · ·, z'(t- Uk+t)). (2)

Evaluation of software for delay differential equations 181

Our preliminary testing of existing methods for DDEs indicated that the effectiveness
(or in some cases even the applicability) of a particular method could be very sensitive to
three factors:

• the existence of derivative delays (l > 0),
• the existence of state dependent delays (ai(t, y(t)) depends on y(t) for some i),
• the existence of small or vanishing delays (either ai(t*, y(t*)) = 0 for some t* E (t0, tF)

or lai(t,y(t))l becomes small relative to the expected stepsize).

With this in mind we partitioned our candidate test problems according to these factors.
We gathered test problems from the literature relying particularly on test problems used
by Neves and Thompson (1992b), and Paul (1994). In some cases where the problem class
contained only a single problem we introduced new test problems of our own. We now
have a collection of twenty-three test problems grouped in eight problem classes:

• Class A: RDEs with time-dependent delay,
• Class B: RDEs with small time-dependent delay,
• Class C: RDEs with state-dependent delay,
• Class D: RDEs with small state-dependent delay,
e Class E: NDEs with time-dependent delay,
e Class F: NDEs with small time-dependent delay,
e Class G: NDEs with state-dependent delay,
• Class H: NDEs with small state-dependent delay.

The complete specification of the test problems for each of these classes is given in the
Appendix.

For about one half of our test problems an analytic closed form expression for the true
solution is known. In the remaining cases we were able to determine, using a reliable
numerical method (implemented in quadruple precision with an error tolerance of 10-12)

a continuous approximation to the true solution that we feel confident is accurate to more
than ten decimal digits. (It is interesting to note that the associated piecewise polynomial
(continuous extension) is of degree six on each subinterval and the maximum number of
subintervals required to provide this accuracy was 9600. This indicates the importance of
the use of a high order method for computing the reference solution.)

2 THE DDETST PACKAGE

The DDETST package shares the same design and overview as the original NSDTST
package. The package monitors each step in the solution of a test problem at a prescribed
error tolerance and records and reports the following statistics:

• the total computer time required to solve the problem,
e the number of derivative evaluations required to solve the problem,
e the number of successful steps required to solve the problem,
• the endpoint global error,

182 Part II Testing and Evaluation Methodology

• the maximum global error observed over the interval of integration,
• the maximum defect observed over the interval of integration,
• the fraction of steps for which the maximum defect exceeds the tolerance.

Note that the first four statistics are always reported while the others are optional. The
maximum global error and the maximum defect are defined in terms of the underlying
continuous approximation, z(t), and are based on a number of sampled values per time
step (the actual number of sampled values ased is a parameter of the testing package
which must be set by the user).

After the completion of each problem over a range of error tolerances statistics quanti­
fying the 'smoothness' (or robustness) of the method are determined (if requested). For
this purpose the method is assessed on how well it has been able to satisfy:

error= C ·TOLE, (3)

for some C > 0 and E 'close' to one, over the range of tolerances that were specified. These
smoothness statistics are justified and discussed in detail in Enright and Pryce (1987)
for initial value problems and they form the basis for the definition of the 'normalized
efficiency statistics' which are suitable for use when comparing different methods. Note
that smoothness statistics based on (3) are optional and are available for three measures
of error (endpoint global error, maximum global error and maximum defect).

After the completion of each problem class and after the completion of all problems
corresponding summary statistics are reported. These summaries can be useful but must
be interpreted carefully as they can be distorted by failure or anomalous behavior on one
problem.

The overall control structure and control interfaces of the DDETST package is repre­
sented in Figure 1 where the key subroutines that comprise DDETST are indicated by
their names (in upper case) and the routines that must be supplied by the user are in
lower case enclosed in rectangles. The routines of the testing package and their principal
tasks are:

DDTST
CNTROL
STATS

YSOL
IVALU

EVALD
DVALU
IFCN,
DIFCN
FCN

organizes and monitors the overall collection of statistics,
supervises the solution of a single integration,
monitors the code being tested and passes statistics via COMMON
to DDTST and CNTROL,
computes the 'true' solution for any t in the range of integration,
specifies the number of equations, integration interval, the number
of delay arguments, and weights for scaling,
specifies the 'true' solution at the endpoint,
evaluates the delay arguments t - a;(t, y(t)) for i = 1, 2, · · · , k + R.,
evaluates the initial functions ¢(t) and ¢1(t) for t :::; t0 ,

evaluates the differential equation.

In the main program (labeled 'user's program' in Figure 1), the particular problems,
range of tolerances and level of detailed statistics requested are selected. For example,

Evaluation of software for delay differential equations 183

f--- DDTST --- CN ROL -- IVALU

solver
(Code
being
tested)

STATS ---YSOL

EVALU

FCN
DVALU

1------+- IFCN
DIFCN

Figure 1 Overall control structure of DDETST.

C . . Local Scalars ..
REAL FLAG
INTEGER
CHARACTER• SO

!OUT
TITLE

C . . Local Arrays ..
REAL TOL (11)
INTEGER IDLIST(SO), OPTIOI(10)

C . . External Functions
REAL COIST
EXTERNAL COIST

C .. External Subroutines
EXTERNAL DDTST

C . . Data statements ..
DATA OPTIOI/5, 0, 1, 0, 100, 100, 4•0/
DATA TOL/1.E-4,1.E-6,1.E-8,1.E-10,7•0.EO/
DATA IDLIST/11,12,0,21,22,75*0/

C . . Executable Statements ..
C SAMPLE DRIVER FOR DDTST, WITH TWO GROUPS CONSISTING OF
C PROBLEM CLASSES A,B SOLVED II SCALED FORM,
C AT FOUR TOLERANCES, WITH OPT=5 AID IORMEF=O.

TITLE = 'DDVERK'
lOUT = COIST(3)
OPEI(IOUT, FILE="DDETEST-DDVERK")
CALL DDTST(TITLE,OPTIOI,TOL,IDLIST,FLAG)
CLOSE(IOUT)

END

Figure 2 Sample user's program.

184 Part II Testing and Evaluation Methodology

- Declare Workspace required by SOLVER

- Set options of SOLVER (in particular set one-step mode)

- for each successful step do

- invoke SOLVER ()

- if SOLVER in trouble then exit

- if max global err requested then determine the approximation z at kg poi

- if max defect requested then measure 6(t) at kd points

- invoke STATS (

end do

Figure 3 Overview of METHOD routine.

Figure 2 presents the 'user's program' for a run assessing the code DDVERK on two
problem classes, over four tolerances, with detailed assessment of the maximum observed
global error and maximum observed defect (indicated by setting IOPT(l) = 5).

The method being tested is usually presented as two subroutines: METHOD and SOLVER.
METHOD is a special driver supplied by the user with a standard calling sequence dic­
tated by the testing package. Its purpose is to set up the workspace and options of the
underlying method, encoded in the routine SOLVER, so that it will return after every
successful step. A generic overview of METHOD is presented in Figure 3.

Note that the routines defining the twenty-three test problems and the associated un­
derlying true solution comprise a. useful pa.cka.ge on their own and can be called directly
by users.

3 EXAMPLES OF USE OF DDETST

In Enright and Hayashi (1996a.; 1996b) we have developed and analyzed a method for
DDEs based on the use of continuous explicit Runge-Kutta formulas with defect-based
error and stepsize control. The method DDVERK estimates the maximum magnitude of
the defect associated with the numerical solution z(t) on each step of the integration and
attempts to ensure that this is bounded by the prescribed error tolerance. Tha.t is, on
each successful step

E::::; TOL,
where E is an estimate of the maximum defect associated with tha.t step and is therefore
assumed to satisfy

E ~ max {ll6(s) II}·
t$•:9+h

The stepsize changing strategy and the discontinuity-locating strategy, two of the most
critical components of DDE solver, are based on the reliability of this estimate. In deciding
on what formula. to use to determine E one must inevitably consider a. trade-off between

Evaluation of software for delay differential equations 185

cost and reliability. (For a detailed investigation of the equivalent trade-offs in initial
value methods see Enright (1993).) In developing DDVERK we considered three possible
definitions forE: one based on one sample point per step,

for a carefully chosen value of t1; one based on the use of two sample points per step,

E2 =max{ II 5(t + t1h) II, II 5(t + t2h) II}
where t1 and t2 are carefully chosen; and one based on the use of a new, more accurate
continuous approximation, .Z(t), requiring three extra derivative evaluations per step but
yielding an asymptotically (h-+ 0) correct estimate

E3 = II 5(t + t*h) II .
Table 1 presents a summary of the statistics generated by DDETST for three imple­

mentations of DDVERK corresponding to the use of these three estimates on problem
Al. Note that the extra cost per step but improved reliability of E2 and E3 is clearly
reflected in the statistics. Figure 4 gives a graphical representation of the same informa­
tion. (Note that the solution to this problem approaches a periodic steady state with the
specified length of integration spanning several periods. In this situation the long-term
accuracy of the numerical solution can be very sensitive to the errors introduced in the
initial interval where low order discontinuities can have an effect. The rather large values
for the observed maximum global error, reported in Table 1, are due to this sensitivity.)
Table 2 and Figure 5 present the corresponding overall summary statistics for the three
implementations on nineteen of the twenty-three test problems. (Problems C2, E1, F1,
and F2 are excluded because at least one of the three implementations failed to solve
these problems at tolerance of 10-10.)

Interface routines for methods developed elsewhere, such as ARCH! (Paul, 1995), DRK­
LAG5 (Neves and Thompson, 1992a), and DRKLAG6 (Corwin and Thompson, 1996) have
been written and detailed assessments carried out using DDETST. It is too early to report
any detailed comparisons but weakness of particular methods have been identified. For
example, some methods cannot handle neutral problems with vanishing delays effectively.
We are expecting that distribution of DDETST will lead to the development and release
of improved versions of existing methods.

REFERENCES

Castleton, R. N. and Grimm, L. J. (1973). A first order method for differential equations
of neutral type, Math. Comput. 27, 571-577.

Corwin, S. C. and Thompson, S. (1996). DKLAG6: Solution of systems of functional
differential equations with state dependent delays, Technical Report 96-002, Computer
Science Department, Radford University, Radford.

Dormand, J. R. and Prince, P. J. (1986). Runge-Kutta triples, Computers Math. Applic.
12A(9), 1007-1017.

El'sgol'ts, L. E. and Norkin, S. B. (1973). Introduction to the Theory and Application of
Differential Equations with Deviating Aryuments, Academic Press, New York.

186 Part II Testing and Evaluation Methodology

Table 1 Statistics reported for DDVERK using different defect estimates on Al

FCN MAX MAX FRACT
TOL CALLS STEPS GLB ERR DEF DEF > TOL

E1- DDVERK 10-2 573 52 1.9 0.48 0.00
10-4 1345 79 169.7 9.32 0.38
10-6 2524 164 24.6 8.61 0.38
10-8 5243 346 15.3 11.57 0.53

10-10 9688 718 12.9 18.46 0.63

E2-DDVERK 10-2 625 52 1.9 0.48 0.00
10-4 1875 94 414.4 1.73 0.05
10-6 3300 191 54.6 2.70 0.11
10-8 6288 402 11.9 1.53 0.09

10-10 11 851 837 12.3 1.55 0.13

E3-DDVERK 10-2 729 52 1.4 0.47 0.00
10-4 2172 91 407.8 3.56 0.11
10-6 3966 191 184.4 9.02 0.07
10-8 7685 410 30.8 1.62 0.06

10-10 14 893 860 6.4 1.76 0.06

Table 2 Overall summary Statistics reported for DDVERK using different defect estimates

FCN MAX FRACT
TOL CALLS STEPS DEF DEF > TOL

E1- DDVERK 10-2 10 440 686 19.30 0.03
10-4 15 427 1058 9.32 0.05
10-6 25 680 1861 8.61 0.06
10-8 47 949 3615 12.75 0.09

10-10 90 054 7279 18.46 0.12

E2- DDVERK 10-2 11 292 696 1.78 0.02
10-4 17 188 1083 2.09 0.02
10-6 29 046 1934 2.70 0.02
10-8 53 340 3740 1.53 0.02

10-10 98 524 7453 3.14 0.02

E3- DDVERK 10-2 12 607 699 2.13 0.06
10-4 19 632 1101 3.56 0.03
10-6 33 181 1964 9.02 0.02
10-8 62 416 3842 2.41 0.02

10-10 121 217 7816 3.20 0.02

Evaluation of software for delay differential equations

0.8.---~--~--~---,

0.6

I
0 o4

f
104

E1
.!II E3 tj
~

103

0.2 E2

.. .:.·::.,;. :.:·;.·:.o·-"" -- .. ---------- ... -

E3
-4 -6 -8 -10

102·L---~--~--~-~_J
-2 -4 -6 -8 -10

LOG10(Tolerance)

Figure 4 Problem: Al.

0.12

0.1

jo.os

~006 c . E1

I IL0.04
· .. · ·· E3

0.02 ------------- ;·~·~c.~.~.~.~.~ .. c."·•-······"·< .. ~.~.-..
E2

~~----4~----67----_~8-----~10
LOG1 O(Tolerance)

LOG10(Tolerance)

~--· .. ~ .. --"
.·· ,'

-4 -6 -8
LOG10(Tolerance)

Figure 5 Overall summary statistics.

-10

187

Enright, W. H. (1993). The relative efficiency of alternative defect control schemes for high
order continuous Runge-Kutta formulas, SIAM J. Numer. Anal. 30(5), 1419-1445.

Enright, W. H. and Hayashi, H. {1996a). Convergence analysis of the solution of retarded
and neutral delay differential equations by continuous numerical methods, Submitted to
SIAM J. Numer. Anal . .

Enright, W. H. and Hayashi, H. {1996b). A delay differential equation solver by a contin­
uous Runge-Kutta method, In preparation.

Enright, W. H., Jackson, K. R., N{llrsett, S. P. and Thomsen, P. G. (1986). Interpolants
for Runge-Kutta formulas, ACM Prans. Math. Soft. 12, 193-218.

Enright, W. H. and Pryce, J. (1987). Two FORTRAN packages for assessing initial value
methods, ACM Prans. Math. Soft. 13(1), 1-27.

Gatica, J. and Waltman, P. (1982). A threshold model of antigen antibody dynamics
with fading memory, in Lakshmika.ntham (ed.), Nonlinear phenomena in mathematical
science, Academic Press, New York, pp. 425-439.

Hayashi, H. (1996). Numerical solution of retarded and neutral delay differential eqtt.ations
u.sing continuou.s Runge-Kutta methods, PhD thesis, Department of Computer Science,

188 Part II Testing and Evaluation Methodology

University of Toronto, Toronto, Canada.
Jackiewicz, Z. (1981). One step methods for the numerical solution of Volterra functional

differential equations of neutral type, Applicable Anal. 12, 1-11.
Kuang, Y. (1991). On neutral delay logistics Gauss-type predator-prey systems, Dyn. Stab.

Systems 6, 173-189.
Kuang, Y. and Feldstein, A. (1991). Boundedness of solutions of a nonlinear nonau­

tonomous neutral delay equation, J. Math. Anal. Appl. 156, 293-304.
Mackey, M. C. and Glass, L. (1977). Oscillation and chaos in physiological control systems,

Science 197, 287-289.
Mahaffy, J. M., Belair, J. and Mackey, M. C. (1996). Hematopoietic model with moving

boundary condition and state dependent delay, Private communication .
Neves, K. W. (1975). Automatic integration of functional differential equations: An ap­

proach, ACM Trans. Math. Soft. 1, 357-368.
Neves, K. W. and Thompson, S. (1992a). DKLAG5: Solution of systems of functional

differential equations with state dependent delays, Technical Report 92-009, Computer
Science Department, Radford University, Radford.

Neves, K. W. and Thompson, S. (1992b). Solution of systems of functional differential
equations with state dependent delays, Technical Report TR-92-009, Computer Science,
Radford University.

Paul, C. A. H. (1994). A test set of functional differential equations, Technical Report 249,
The Department of Mathematics, The University of Manchester, Manchester, England.

Paul, C. A. H. (1995). A user-guide to Archi: An explicit Runge-Kutta code for solving
delay and neutral differential equations, Technical Report 289, Department of Mathe­
matics, University of Manchester, Manchester.

Shampine, L. F. (1985). Interpolation for Runge-Kutta methods, SIAM J. Numer. Anal.
22, 1014-1027.

Wheldon, T., Kirk, J. and Finlay, H. (1974). Cyclical granulopoiesis in chronic granulocytic
leukemia: A simulation study., Blood 43, 379-387.

APPENDIX 1 SPECIFICATION OF PROBLEMS

Problem Class A. RDE with time dependent delays.

A1: Model of blood production (Mackey and Glass, 1977)

y'(t)

cf>(t)

0.2y(t- 14)
1 + y(t- 14)to - 0.1y(t),

= 0.5, for t ~ 0.

to= 0, t/ = 500,

A2: Model of chronic granulocytic leukemia (Wheldon, Kirk and Finlay, 1974)

'() 1.1
Yt t = 1 + VlO(Yt(t- 20))5/ 4

10yt(t)
1 + 40y2(t)'

Evaluation of software for delay differential equations 189

Y2'(t) = 100y1 (t) _ 2.43 (t)
1 + 40y2(t) y2 '

t 0 = 0, t! = 100,

¢>1(t) = 1.05767027/3, ¢>2(t) = 1.030713491/3, for t ~ 0.

Problem Class B. RDE with small time dependent delays.

B1: (Neves, 1975)

y'(t) 1-y(exp(1-1/t)), t0 = 0.1, t! = 10,

¢>(t) = ln(t), for 0 < t ~ 0.1.

(analytical solution: y(t) = ln(t), vanishing delays: t = 1)
B2: (Neves and Thompson, 1992b)

y'(t) = f(y(t/2))- y(t), to= 0, t! = 2ln(66),

y(O) = 1,

where f(s) = 1 if s < 0 and f(s) = -1 if s ~ 0. (analytical solution:

{
2exp(-t)- 1, for 0 ~ t ~ 2ln(2),

y(t) = 1- 6exp(-t), for 2ln(2) < t ~ 2ln(6),
66exp(-t)- 1, for 2ln(6) < t ~ 2ln(66),

vanishing delay: t = 0)

Problem Class C. RDE with state dependent delays.

C1: (Paul, 1994)

y'(t) = -2y(t- 1 - jy(t)l)(1- y2(t)), t0 = 0, t! = 30,

¢>(t) = 1/2.

C2: (Paul, 1994)

y~(t) -2yl(t- Y2(t)),
y~(t) = IYI(t- Y2(t))l- IYl(t)l

1 + IYl(t- Y2(t))l '
t0 = 0, t! = 40,

¢>1(t) = 1, ¢>2(t) = 1/2, for t ~ 0.

C3: Model of hematopoiesis (Mahaffy, Belair and Mackey, 1996)

y~(t) soy2(t- T1) --yy1(t)- Q,
y~(t) = f(YI(t))- ky2(t),

190

y~(t)

Part II Testing and Evaluation Methodology

Qe'Ytl3(t)

1 - soy2(t- T1- Ya(t))'
t0 = 0, t, = 300,

3.325, t/>3(0) = 120,

= { 10, for - T1 ::; t ::; 0,
9.5, for t < -T1 ,

where f(y) = ~ , s0 = 0.0031, T1 = 6, 'Y = 0.001, Q = 0.0275, k = 2.8, a =
1 + yr

6570, K = 0.0382, T = 6.96.
C4: The same equation in C3 with to = 0, tF = 100,

t/>1(0) = 3.5, t/>3 (0) =50,

t/>2(t) = 10, for t::; 0,

s·o = 0.00372, T1 = 3, 'Y = 0.1, Q = 0.00178, k = 6.65, a = 15600, K = 0.0382, r =
6.96.

Problem Class D. RDE with small state dependent delays.

D1: (Neves, 1975)

y~(t) Y2(t),
y~(t) -y2(exp(l- Y2(t)))y~(t)exp(l- Y2(t)),

t0 = 0.1, t, = 5,

t/>1(t) ln(t), t/>2(t) = 1/t, for 0 < t ::; 0.1.

(analytical solution: y1(t) = ln(t),y2(t) = 1/t, vanishing delay: t = 1)

D2: Model of antigen antibody dynamics with fading memory (Gatica and Waltman,
1982)

y~(t) -r1y1(t)y2(t) + T2Ya(t),
y~(t) -r1y1(t)y2(t) + o:r1y1(t- y4(t))y2(t- Y4(t)),
y~(t) = T1Y1(t)y2(t)- T2Ya(t),

y~(t) = 1 + 38- Y1(t)y2(t)- Ya(t) exp(8y4(t)),
Y1(t- y4(t))y2(t- Y4(t)) + Ya(t- Y4(t))

t0 = 0, t, = 40,

tP1(t) = 5, t/>2(t) = 0.1, t/>a(t) = 4>4(t) = 0, for t::; 0,

where r1 = 0.02, r 2 = 0.005, o: = 3, 8 = 0.01. (vanishing delay: t = 0)

Problem Class E. NDE with time dependent delays.

Evaluation of software for delay differential equations 191

E1: Model offood-limited population (Kuang and Feldstein, 1991)

y'(t) ry(t)(1- y(t- 1)- cy'(t -1)), t0 = 0, tf = 40,
tjJ(t) = 2+t, for t~O,

where r = 1rjy'3 + 1/20, c = v'3/27r -1/25.
E2: Logistic Gauss-type predator-prey systems (Kuang, 1991)

where a= 1/10, p = 29/10, T = 21/50.

Problem Class F. NDE with small time dependent delays.

F1: (Jackiewicz, 1981)

y'(t) 2cos(2t)y2coa(tl(t/2) + ln(y'(t/2)) -ln(2cos(t))- sin(t), to= 0, t1 = 1,

tjJ(O) = 1, 1/J'(O) = 2.

(analytical solution: y(t) = exp(sin(2t)), vanishing delay: t = 0)
F2: (Neves and Thompson, 1992b)

y'(t) = y'(2t- 1/2), t0 = 0.25, t1 = 0.499,
tjJ(t) exp(-t2), t/J'(t) = -2texp(-t2), for t ~ 0.25.

X; = (1 - Ti)/2,
B; 2(4i-t + B;_t),

C; = -4i-2 - B;-t/2 + 0;-t,
i 2 i K; = - exp(-4 x; + B;x; + 0;)/2 + y;_1(x;),

with B0 = 0 0 = Ko = 0, vanishing delay: t = 1/2)
F3:

y'(t) = exp(-y(t))+L3 [sin(y'(a(t)))-sin(3 +~(t))]. t0 =0, t,=10,

t/J(O) ln(3), t/J'(O) = 1/3,

192 Part II Testing and Evaluation Methodology

where a:(t) = 0.5t(1- cos(21rt)), L3 = 0.2. (analytical solution: y(t) = ln(t + 3),
vanishing delays: t = 0, (2i - 1)/2, for i = 1, 2, · · ·, 10)

F4: The same equation in F3 with L3 = 0.4.
F5: The same equation in F3 with L3 = 0.6.

Problem Class G. NDE with state dependent delays.
(The problems are primarily of theoretical interest only. From a numerical point of view
a method should be able to solve them reliably on the prescribed range.)

G1: (El'sgol'ts and Norkin, 1973, p. 44)

y'(t) -y'(t- y 2(t)/4), t0 = 0, tf = 1,

tjJ(t) 1-t, for t ~ 0, t/J'(t) = -1, for t < 0.

(analytical solution: y(t) = t + 1)
G2: (El'sgol'ts and Norkin, 1973, pp. 44-45)

y'(t)
tjJ(t) =

-y'(y(t)- 2), to= 0, tf = 1,

1-t for t~O, t/J'(t)=-1, for t<O.

(analytical solution: y(t) = t + 1)

Problem Class H. NDE with small state dependent delays.

H1: (Castleton and Grimm, 1973)

-4ty2(t) 1 (I (ty2(t)))
y'(t) 4+ln2(cos(2t)) +tan(2t)+2arctan y 1+y2(t) '

t/J(O) = 0, t/J'(O) = 0.

t0 =0, tt=0.9?T/4,

(analytical solution: y(t) = -ln(cos(2t))/2, vanishing delay: t = 0)
H2: (Hayashi, 1996)

y'(t) = cos(t)(1 + y(ty2(t))) + L3y(t)y'(ty2(t))
+ (1 - L3) sin(t) cos(t sin2(t)) - sin(t + t sin2(t)),

t0 =0, tt=?T,
tjJ(O) = 0, t/J'(t) = 1,

where L3 = 0.1.
(analytical solution: y(t) = sin(t), vanishing delays: t = O,?r/2,11")

H3: The same equation in H2 with L3 = 0.3.
H4: The same equation in H2 with L3 = 0.5.

Evaluation of software for delay differential equations 193

DISCUSSION

Speaker : W. Enright

R. Hanson : How is this work to be distributed or made available to the user community?

W. Enright : We are not yet distributing the DDETEST package as we are still adding
new problems and deleting them. We will soon be distributing it freely to those interested
(via FTP).

B. Smith : Of all the test problems, can you identify a "difficult subset" or a parametrised
set which can be used as a benchmark to quantify the potential of new methods that may
be developed in the future?

W. Enright :This would be an important contribution. We don't have enough experience
yet to identify such a subset of our problems. Many of our problems are members of a
parametrised set and others are chosen to stretch the limits of some aspects of existing
methods.

