
8

A Framework for Dealing with and
Specifying Security Requirements in
Information Systems

Eric Dubois and Suchun Wu
Institut d'Informatique, Facultes Universitaires de Namur
Rue Grangagnage, 21 B-5000 Namur, Belgium, Tel:(32)81724980
Fax: (32)81724967, {edu,swuj@info.fundp.ac.be

Abstract
As security is becoming increasingly important for an Information System (IS). specifying
information system security is considered as a major priority in secure system development.
In this paper we present a Requirements Engineering (RE) framework for dealing with and
specifying IS security requirements. Within the framework, we propose to view security
requirements as quality requirements so that a goal-oriented approach in the RE field can be
applied to deal with them. In our study, specifying some security requirements is based on the
Albert language, a new formal language for modelling functional requirements relating to
distributed real-time systems.

Keywords
Information system security, Security Requirements Treatment Framework, Formal
requirements languages, Functional and Quality requirements engineering.

1 INTRODUCTION

Security, like accuracy, performance and safety, can be considered as a quality of an
Information System (IS). Although such a quality is often extremely important and even
critical for the survival of an IS, few systems have been originally designed with serious
security considerations in mind (Grimm,1989). A typical example is the famous OSI
communication standards (IS0,1982) where the security was not considered at all in the
original version. The security features were only added to the 1988 version (IS0,1988).

Confronted with such a situation and in the light of the results in the Requirements
Engineering (RE) domain (Dubois,1991) (Mylopoulos,1992), we try, in this paper, to use a
RE methodology to address IS security. We emphasise that an early and formal presentation
and analysis of security requirements in an IS are essential and badly needed, because a full
understanding of the user-oriented requirements is the prelude and preliminary for a system
developer to make rational design decisions and implementation considerations
(Landwehr,l993).

S. K. Katsikas et al. (eds.), Information Systems Security
© IFIP International Federation for Information Processing 1996

Security requirements in information systems 89

2 BASIC CONCEPTS ON REQUIREMENTS ENGINEERING

In this section, we briefly describe the RE activity and its role within the software lifecycle.

2.1 Requirements Engineering vs. Design Engineering

The majority of recent software development methods distinguish between two basic
development activities: requirements engineering (RE) and design engineering (DE) (see.
Figure 1). The former starts from informal wishes expressed by users and aims at elaborating
in a precise way a so-called requirements document for the system to be developed. This
document is the starting point of the DE activity, which aims at implementing a software­
based system meeting the requirements in an efficient way.

Engineering
]

Requirements

1 Design
Engineering

Figure 1 The software development activity.

Within the whole software lifecycle, our focal point in this paper is on the RE part which
includes the following two essential activities (see Figure 1):

• Activity for acquiring and dealing with the system requirements (or goals for requirements
treatment purpose) from user's informal requirements. When we develop a specific IS, we
have no reasons of isolating it from its environment involving software, hardware, human
users, etc. In this view, we insist that the requirements we are going to deal with are those
inherent in a "composite system" (i.e. made of heterogeneous components) (Feather,1987).

• Activity for elaborating a requirements document. In the requirements document, one can
find the description of the different components of the system and the set of the
requirements specifications attached to the individual components.

2.2 The Role of the Requirements Document

The role played by the requirements document is now widely recognised as a crucial one
since it is at the basis of a contractual relationship between customers and designers.
However, this document is often imprecise, incomplete, ill-structured, and even inconsistent.
For this reason, for approximately the past fifteen years, a lot of effort has been devoted to the
development of new languages supporting the adequate modelling of requirements
(Dubois,1994).

There is a large consensus on the requirements document's content where one can
distinguish between two kinds of requirements: Functional Requirements (FRs, also referred
to as contractual requirements, CRs), and Quality Requirements (QRs, also referred to as non­
functional requirements, NFRs).

Functional Requirements. FRs are associated with the quantifiable obligations binding
each of the different agents identified within the composite system being developed. For

90 Part Three Secure Information Systems II

example, in a Phone Banking system, one of the functional requirements is that for the bank
information system, the response time of the money transaction corresponding to a customer's
money transfer request should be less than one day. In the next section, we will see how one
can use the Albert language to formally express such a type of requirements through Albert
specification models.

Non-Functional Requirements. In the 1990s, NFRs are increasingly taking the central
place within the IS development domain. The NFRs of a system can be thought of as a quality
of the system (Pohl, 1992) and the constraints to the system (Hofmann, 1993). The examples of
NFRs are safety, security, performance, etc .. In the following text, the two terms: NFRs and
Quality Requirements are indistinguishably used.

Like FRs, NFRs are requirements also expressed by users. They often represent the user's
subjective wishes. They need to be understood by the analysts who in tum transform them
into a meaningful form for the system development. This requirements refinement is called
"requirements operationalisation" in the terminology of logical computing (Dardenne, 1993).
In section 5 we shall detail how to operationalise the QRs concerned.

2.3 The Requirements Document Elaboration

Elaborating a requirements document is not merely writing down the users' wishes by using
the formalisms and the structures of the language. It is a process which involves a series of
activities for working out the requirements document.

A number of methods are now in existence to support these activities, e.g .•
(Dardenne,l993), (Mylopou1os,l992), (Blyth,1993). As these methods focus on one specific
aspect of the process, we think that there is a need to provide methodological guidance for the
analysts to elaborate a 'good' requirements document.

As a matter of fact, a lot of requirements documents are still written in an informal way
using natural language statements complemented with drawings. Most of the proposed
languages are concerned with the contractual (functional) requirements. Examples of these
languages include SADT, MERISE, NIAM and SSADM. These languages have a rigorous
syntax but suffer from a lack of formal semantics. This leads to the development of new
languages based on formal semantic grounds (see (Dubois,1991)) for a comprehensive
survey). Albert is a new formal language which is characterised by its expressive power (in
the description of real-time distributed systems), by its formality (based on real-time linear
temporal logic), and by the proposed structuring mechanisms (constraint templates).

3 ABOUT THE Albert LANGUAGE

Albert is briefly presented through a small example. The informal description of the system in
that example is described below.

The objective of !he Belgian Phone Banking System (PBS) is to take advantage of lhe telephone system in
order for bank customers to submit transfer orders to !he bank. A transfer order concerns a given amount of
money to be transferred from !he account of !he originator to !he account of another customer of the bank.
The bank is responsible for crediting and debiting lhe bank accounts concerned wilhin one day of lhe
transfer order being issued. For lhe purpose of simplification, in Ibis small example, we consider that each
customer has just one account in the bank.
In view of its commercial importance, the PBS is expected to be secure.

Using the language involves two activities: (i) writing declarations, i.e. introducing the
vocabulary of the considered application and (ii) expressing constraints, i.e. logical statements
which identify possible behaviours of the composite system and exclude unwanted ones. A
graphical syntax (with a textual counterpart) is used to introduce declarations and to express
some static properties. The expression of the other constraints is purely textual.

Security requirements in information systems 91

3.1 Declarations

Agents are grouped into societies. Societies themselves can be grouped together to form larger
societies. Figure 2 shows the structure of the society corresponding to the PBS: the PBS agent
is an aggregate of one Bank.IS and several Cust.

The declaration part of an agent consists in the description of its states structure and the list
of actions.

Agents include a key mechanism that allows the identification of the different instances. A
type is automatically associated to each class of agent. For instance, each Cust agent has an
identifier of type CUST.

The state is defined by its components which can be individuals or populations. Usually
populations are sets of individuals but they can also be structured in sequences or tables.
Elements of components are typed using (i) predefined elementary data types (like, STRING,
BOOLEAN, INTEGER ...), (ii) user-defined elementary types (for which no structure is
given), or (iii) user-defined constructed types built using predefined type constructors like,
e.g. Cartesian product, sequence, union, etc .. In Figure 2, one can see that the Bank.IS agent
has two state components: Accounts and Balances, both are a table indexed by CUST and
ACCOUNT respectively.

The action is graphically represented by a rectangle embedded with an oval. Debit and
Credit are actions controlled by the Bank/S, while Transfer is the one performed by a Cust
agent. Actions can have arguments, for example, each occurrence of the Transfer action has
value of types ACCOUNT and INT as arguments.

Figure 2 Graphical declaration of the PBS Society.

The diagram also includes graphical notations used to express static visibility relationships
linking the agent to the outside (importation and exportation mechanisms). Boxes without
arrow denote information (state components or actions) which is not visible from the outside
while boxes with arrow denote infmmation which is exported to the outside (for instance, the
Transfer action of Cust).

3.2 Constraints

Constraints are used for textually describing an agent's behaviour. Figure 3 introduces the
specification associated with the behaviour of the Cust and Bank.IS agents and refers to the
graphical declaration shown in Figure 2. Formal constraints are expressed in terms of the
different patterns (or templates) available in the language. Not all of them are illustrated in
the example, but one may notice in Figure 3 the use of the following ones:

• Under the state behaviour heading are described two kinds of constraints: static
constraints which are true in all states (usually referred as invariants); dynamic constraints
describe the evolutionary aspecL~ of the state. They are expressed using temporal
connectives.

• Under the heading effects of actions the effects of the different actions happening are
described. The effect of an action is expressed in terms of a property characterising the

92 Part Three Secure Infonnation Systems II

state which follows the end of an action occurrence (like the effect of Credit and Debit
actions).

• Under the causality heading, constraints are introduced to define the causality relationship
existing between some occurrences of actions. In Figure 3, the "~" symbol can be
quantified by a temporal operator to express performance constraints (e.g. the ~
symbol in the causality constraint in Figure 3 means that the occurrence of the Credit
action must be within a 1 day interval after the corresponding occurrence of the Transfer
action). The right part of a causality relationship (the reaction) may only refer to actions
which are issued by the agent.

• Constraints under the heading capability describe the responsibility of the agent with
respect to the occurrences of its own actions. The default rule is that all actions are
permitted whatever the situation but specific constraints can be added to specify
circumstances under which obligations and preventions are associated with actions
occurrences, like that the action Debit may not occur for a Cust whose account number is
not in the Accounts table.

• Finally, the constraint under the action perception heading specifies that the Bank!S
perceives the Transfer action performed by a Cust agent. the heading state information
shows parts of the agent's state to other agents within the same society .

. I Cust I
COOPERATION CONSTRAINTS
Action Information
XK(Transfer(al,a2,n).BankiSffRUE)
I In any situation, the customer should inform the Bank/S of his/her request.

I BankiS I
LOCAL CONSTRAINTS
State Behaviour
\J a EDom(Balances): ---, [11~·~ Balances[a]< 2000
I The customers' account balances cannot go beyond $2000 within one month.

Effects of Actions
Credit(a,n): Balances(a]= Balances[a]+n
I The account a is credited with an amount n.

Debit(a,n): Balances[a]= Balances[a]-n
I The account a is debited with an amount n.

Causality
O:Sid

-.Transfer(al,a2,n)-------+ Debit(al,n);Credit(a2,n)
I After a transfer order is issued, the corresponding credit and debit operations should
I be executed within at most a day.

Capability
F(Debit(al,n)/-, In-dom(al,Accounts)
F(Credit(a2,n)/-, In-dom(a2,Accounts)
I The actions Debit and Credit cannot be performed when the account number is not in the Accounts table.

COOPERATION CONSTRAINTS

Security requirements in information systems

Action Perception
XK(-.Transfer(al,a2,n)l8alances[al]>n·2000)

93

I A transfer order is processed by the BankiS if, and only if the resulting balance of the customer's account
I does not go beyond a 2000 overdraft. It should be noted that the identity of the customer issuing the request
I cannot be perceived (see the "-" symbol).

State Information
/(Balances[a].c/ Accounts[c);<a)
I The visibility of an account balance is restricted to the customer whose account is in the Accounts table.

Figure 3 Constraints on the Cust and Bank/S agents.

It is worth noting that unlike usual design specification languages, the Albert semantics
is not operational. It is also interesting to note that there are two constraints templates: local
constraints and cooperation constraint. The former describes the internal behaviour of the
agent, and the latter specifies how the agent interacts with its environment (i.e. it offers a
dynamic dimension to importation and exportation relationships expressed in the declaration
part of the specification).

As it can be seen, the basic objective underlying the design of Albert has been to allow the
analyst to write her/his specification in a natural way, i.e. without being constrained by the
different kinds of constructs available in the language. Besides the use of different
'templates', one basic property of Albert comes from its declarative style which is due to its
underlying logical framework based on real-time temporal logic (Du Bois,l995). This style
allows more expressiveness and naturalness than the operational style advocated in languages
based on Petri Nets (Sernadas,l987) and ECA (Event-Condition-Action) (Greenspan,l986).

4 THE SECURITY RE FRAMEWORK

In the previous section, the PBS is considered that it functions correctly without regard
security. Our objective is now to make this existing (or legacy) PBS secure. In order to
achieve this objective, we set up a framework which consists of two components each of
which has its own objective:

• A goal refinement process in which a goal-tree is constructed to represent the security
requirements as quality goals and the highly abstract quality goals are refined into
functional ones.

• A goal operationalisation process, which provides a method for traversing the different
levels of goals abstraction during the development of a secure system. It serves as a linkage
between the system quality requirements definition and system components' behavioural
specification. This framework component is described in section 5.

4.1 Goal Refinement Process

In order to take into account security requirements of the existing system, we have not only to
modify the initial functional specification of the system but also to achieve a good
understanding of the rationale behind these modifications.

94 Part Three Secure Information Systems II

PenonSec[PBS]

.t.ea-ui: 0 :Factor SOal • :Deliverable soal •::: :Rejected goal
______... : DecOID.po.ition link •••• •••••• • : Level indication

...__.-:AND """""" :OR

Figure 4 Security goals of the PBS.

Quality Level

Funedonal
Level

Figure 4 pictorially shows a goal-tree established when we hand the PBS case study. This
representation is based on the model proposed in (Mylopoulos,l992), i.e. it consists of a set of
goals and links. For the purpose of this paper, we only define one type of links: decomposition
link. This type of links is used to model the interrelation between subgoals of their parent
goal, i.e. multiple links can contribute to a node either on a joint effect (AND) or on
disjointed effects (OR). As described above, the goal-tree can be considered as an extension
of the conventional AND/OR goal-tree for problem solving in (Nilsson,l971).

Goals are represented as sorts in a predicate form. For example, the goal, "The PBS should
be secure", can be represented as Secure{PBS]. In order to refine this goal into one or more
offspring, one may apply some generic knowledge to the domain. This knowledge is called
method. For instance, a generic decomposition for the PBS can be expressed as follows by
applying a decomposition method from the standpoint of information system security
(Baskerville,l994).

In Figure 4, there are two abstraction levels: the Quality and the Functional. These two
levels reflect the progressive goals refinement that is performed by the analyst during the
requirements engineering process.

At the quality level, the goals are referred to as soft-goals (Yu,l995) related to the so­
called quality requirements. In general cases, they often cannot be well quantitatively defined
and formulated. This requires that the analysts, starting from the abstract goals, progressively
identify more concrete goals belonging to the functional-level, i.e. corresponding to goals that
can be precisely defined in terms of quantifiable conditions on the world. Regarding to their
descriptions, quality-level goals will be described in an informal way (using the natural
language) while we will propose a formal way of defining the functional-level goals (by
proposing some extensions to the Albert language).

From starting point and in accordance with our general knowledge we consequently
decompose the goal Secure{PBS] as follows:

Secure[PBS] => (PhySec[PBS], CompSec[PBS],
DataSec[PBS], CommSec[PBS], PersSec[PBS])

i.e. the goal for securing the PBS is composed of the goals: physical, personnel, computer,
communication and data security measures for the PBS (Landwehr,l993). They are stated as
follows:

• PhySec{PBS]: Protection of physical resources of the PBS from perils.
• CompSec{PBS]: Protection of the computing resources of the PBS from perils.
• DataSec{PBS]: Protection of the valuable data of the PBS from perils.
• CommSec{PBS]: Protection of the communication links of PBS from perils.
• PersSec{PBS]: Protection of the system's personnel from perils.

Among these goals which are still quite abstract and difficult to be precisely defined, we
should make a choice for further understanding and developing. We choose, for example, the

Security requirements in information systems 95

DataSec[PBS] to be further developed. This means that the PBS chooses to rely on the data
security measures rather than on others (which are marked as the rejected goals). In
accordance with the definition of this chosen goal in the literature (ITSEC, 1991), it can be
decomposed into the following three goals: Conf[Info], Integ[Info}, and Avail[lnfo}, where
"Info" denotes the information manipulated within the system, i.e.:

• Conf[lnfo]: Protection of the system's information against disclosure. This ensures that
information is only available to those who have authorised access.

• Integ[lnfo]: Protection of the system's information against unauthorised modification. This
ensures the quality of information with the result that the users can rely on it.

• Avail[lnfo]: Protection against unauthorised withholding of the system's information. This
ensures that all information is accessible to users on a predefined basis.

For the interest of brevity, in the sequel, we concentrate on the specific Confidentiality quality
requirement. In order to achieve this goal, four deliverable goals are identified:

1. Authoriz[Cust]: a customer who accesses to the Bank!S should be the one authorised.
2. Authen[Cust]: the identity of a customer must be authenticated;
3. Authoriz[Act]: a customer should perform the actions that are allowed;
4. Authoriz[Res]: a customer should use the Bank!S resources that are allowed.

5 THE OPERA TIONALISA TION OF THE QRs

Starting from a set of terminal and deliverable goals in the goal-tree, we now undertake the
process for operationalising them in an analogous way proposed in (Dardenne,l993). This
process may involve a number of processing steps. As the security of the PBS is concerned,
we identify the following three steps (including that described in section 6).

The first step is security problem identification and goal formalisation. Let us take just one
deliverable goal at a time, say Authoriz[Act]. In order to understand this goal, we must first
understand the related security risks the system may run.
In referring to Figure 3. we have identified a security problem which can be considered as a
masquerade threat:

The Bank!S cannot identify the sender of a transfer order. This is due to anonymity of the
telephone system. This problem can be identified when we examine the expression "­
.Transfer(a1,a2,n)/Balance[a1]>n-2000)" where the symbol minus "-" denotes a "bland"
variable.

Confronted with the problem identified above, we may rephrase the goal as follows:
The PBS should guarantee that only the authorised customers can perform the Transfer
order which is perceived by the Bank!S agent.

This goal can be more rigorously expressed as a global property on top of the individual
statements associated with the different agents

PBS-Goal: Authoriz[Act]
Capability

F(c. Transfer(a l,a2,n).BankiS/---,Accounts[c]=al)

and can be read as "the Transfer action issued by a customer cannot be perceived by the
Bank!S if the referred account is not the one of the customer".

The second step is agents' responsibility determination. Given a goal and a set of agents of
the system, an analyst has to determine whether the goal could be enforced by one or more of

96 Part Three Secure Information Systems II

the agents according to the circumstances the analyst faces. For instance, one may imagine
that the goal Authoriz{Act] may be fulfilled under the responsibility of either the agent Cust,
or BankiS, or both.

We argue that this step of responsibility assignment is a critical one in the goal
operationalisation process. This point can be clarified through the following choice decisions
we make.

Figure 5 Graphical declaration of the Bank/Sand Cust Agent (secure PBS).

Suppose that our first choice is to assign the responsibility for fulfilling the goal Authoriz{Act]
to the Bank/S alone. The resulting Albert constraint on the agent could be expressed by
modifying the statement given in Figure 3 and by referring the above discussion in the
following way:

I BankiS I
Action Perception
XK(c.Transfer(al,a2n)/Balances[al]>n-2000 A Accounts[c]=al). <I>

However, this choice is not a satisfactory one because the Bank/Scan by no means assume the
responsibility for being able to perceive the identity of the customer who issued a Transfer
order. Thereby, we have considered another alternative resulting in the modification of the
specifications presented in Figure 2 and Figure 3.

The modifications of agents' constructs are graphically shown in Figure 5 from which we
see that a Code state and two new parameters CUST (identifier of a customer) and PIN
(Personal Information Number) in the action Transfer are introduced into the agent Cust, and
a Codes state in Bank/S. These newly introduced constructs permit the BankiS to verify
whether the PIN provided by a customer is the authorised one. The statement <I> is therefore
transformed into the statement <II>, i.e.:

I BankiS l
Action Perception
XK(-.Transfer(c,al,a2,p,n)/Balances[al]>n-2000ACodes[p]=cAAccounts[c]=al) <II>

This constraint states that the Bank/S agent may tackle a transfer request if, and only if, the
customer who issued the transfer request is the one who owns the account and who provides
some information in his/her possession, and the resulting balance of the customer's account
does not go beyond a 2000 overdraft.

Does such a modification rend the PBS sufficiently secure? Our answer is negative. It can
be understood in the light of the fact that the BankiS can still be cheated by a third person if a
customer discloses his/her PIN to that person. From the above analysis, we decided to assign
the responsibilities to both Cust and BankiS in order to meet their common system goal. The

Security requirements in information systems 97

rationale for such a decision is that, in a PBS including multiple customers, as in an open
system, the security confidence should be established on both sides (Grimm,1989).

Therefore, in our case we expect that the Bank!S can undertake the responsibility by
constraining its behaviour to the statement <II>, and that Cust assumes (her)his responsibility
by behaving in accordance with the following deontological rule:

Cust

Capability
F(Transfer(c,al,a2,p,n)/p = UNDEF v c *SELF) <III>

This statement says that a customer cannot issue a Transfer order in which the PIN is
undefined in his request order. SELF denotes a constant referring to the proper identifier of
the customer. This new constraint corresponding to the second modification should be
brought into Figure 3.

For the sake of simplicity, we have not formally defined how PINs are attributed to
customers in order to ensure consistency between the Code components owned by customers
and the corresponding entries in the Codes table managed by the BankiS; the Transfer action
now has a new argument: the PIN code of the customer has to be sent to validate his/her
order; the Bank!S perceives only valid transfer orders (those with a valid PIN code).
Please note that the PINs are not exported (neither the Codes table in the BankiS nor the Code
value in the Cust are visible from the outside).

It is also worth noting that in many cases, a deliverable goal at system level often cannot be
expressed by a single constraint on agents. For clarity, we need to abstract a critical constraint
from others. In this way, each agent may be attached a critical constraint when we assign the
responsibility to the agent. For instance, referring to Figure 2 and Figure 3, one may notice
that apart from the constraint <II> in the agent Bank!S, another new constraint <IV> should
be introduced under the "State Behaviour" heading, i.e.:

I BankiS I
State Behaviours
\:f cl Dom(Codes),c2 Dom(Codes): (cl=c2::::>Codes[cl]* Codes[c2])
/ Different accounts should have different PINs.

<IV>

This constraint <IV> is the third modification corresponding to an invariant which states that
the PIN should be different for each customer.

6 SUMMARY

Security is a quality of an IS. However, it is better considered as an important component of
the IS because security analysis and design can be processed in conjunction with the process
of the system development by means of RE and DE methods.

Using RE methods, especially formal methods, for security specification purposes, we can
obtain a clear and full understanding of secmity problems in order to produce a correct
requirements document. Based on this understanding and using DE methods for dealing with
security, we can reach a design rationale. In this paper, we have proposed a framework which
provides an environment for RE activity in the development of a secure Phone-Banking
System case study. Within the framework, we have stressed the importance of methodological
guidance during the requirements document elaboration process and the need to transform the
abstract quality requirements into the contractual obligations associated with the agents.

98 Part Three Secure Information Systems II

Apart from the toy case-study presented in the paper, we have also used this RE framework
for the purpose of dealing with security requirements for a X.400 Message Handling System.
On the basis of these studies, our ultimate aim is to study a library of transformation that
would be the basis of a theory for building Secure Composite Systems (Wu,l996).

7 REFERENCES

Baskerville, R. (1994) Information system security design methods: implications for
information systems development. ACM Computing Surveys. Vol., 25, W.4.

Blyth, A.J.C., Chudge, J., and Dobson, J.E. (1993) ORDIT: a new methodology to assist in
the process of eliciting and modelling organisational requirements. In Simon Kaplan,
editor, Proc. of the Conference on Organizational Computing Systems - COOCS'93,
Milpitas CA, ACM Press.

Dardenne, A., van Lamsweerde, A., Fickas, S. (1993) Goal-Directed Requirements
Acquisition. Science of Computer Programming, Vol. 20.

Du Bois, Ph. (1995) The Albertll Language - On the Design and the Use of a Formal
Specification Language for Requirements Analysis. PhD Thesis, Computer Science
Department of Namur University, Belgium.

Dubois, E., Du Bois, Ph., and Petit, M. (1994) Albert: an Agent-oriented language for
building and eliciting requirements for real-time systems. In Proceedings of the 27th
Hawaii International Conference on System Sciences- HICSS-27.

Dubois, E., Hagelstein, J., and Rifaut, A .. (1991) A formal language for the requirement
engineering of computer system. From Natural Language Processing to a logic based
approach to Artificial Intelligence; Ed: Andre Thayse, John Willey & Sons.

Feather, M.S. (1987) The language support for the specification and development of
composite systems. ACM Transactions on Programming Languages and Systems, 9(2).

Greenspan, S.J. Borgida, A. and Mylopoulos, J. (1986) A Requirements Modeling Language
and its Logic. In M.L. Bodie and J. Mylopoulos, editors, On knowledge base management
systems, Topics in Information Systems. Springer-Verlang.

Grimm, R. (1989) Security on Network: Do We Really Need It ?. Computer Networks and
ISDN Systems 17.

Hofmann, Hubert F. (1993). Requirements engineering - A survey of methods and tools.
Technical Report, Institute for Informatics. University of Zurich, Switzerland.

ISO. (1982) Information processing systems- Open Systems Interconnection- Basic reference
nwdel. International Standards Organization, ISO 7298.

ISO. (1988) ISO 7498/2 Security Architecture.
ITSEC. (1991) Information Technology Security Evaluation Criteria (ITSEC). Office for

Official Publications of the European Communities, Brussels.
Landwehr, C.E. (1993) How far Can You Trust a Computer?. Invited Paper, SAFECOMP'93,

Proceedings of 12th International Conference on Computer Safety, Reliability and
Security.

Mylopoulos, J., Chung, L., and Nixon, B. (1992) Representing and using nonfunctional
requirements: A process-oriented approach. IEEE Transaction on Software Engineering,
Vol.18, W6.

Nilsson, N. (1971) Problem-Solving Methods in Artificial Intelligence, New York, McGraw­
Hill.

Pohl, K. (1992) The Three Dimensions of Requirements Engineering. NATURE Report
Series, Informatik V, RWTH-Aachen, Ahornstr, 55, 5100, Germany.

Sernadas, A., Sernadas, C., and Ehrich, H-D. (1987) Object-oriented Specification of
dadabases: an Algebraic Approach. In Peter Hammersley (Ed), Proceesings of the 13th
International Conference on Very Large Dada Bases- VLDB'87, Brighton (UK).

Wu, S. (1996) Dealing with and Specifying Security Requirements in Building a Secure
Composite System - A Requirements Engineering Framework Applied to a Secure MHS
Case Study. PhD Thesis, Computer Science Department of Namur University, Belgium.

Security requirements in information systems 99

Yu, E. Modelling Strategic Relationships Process Reengineering. PhD Thesis. Dept. of
Computer Science, University of Toronto. Ontario Canada, 1995

8 BIOGRAPHY

Eric Dubois is an associate professor at the Computer Science Department of Namur
University, Belgium, where he is teaching Software Engineering. He is active in the field of
Requirements Engineering for more than 10 years and published about 30 articles. He is the
leader of the RE group which is active in several national and European ESPRIT projects.

Suchun Wu is a researcher who is finishing his PhD thesis at the Computer Science
Department of Namur University, Belgium. He received a B.Sc. in Electronic Engineering
from Changchun Polytechnic College, China, in 1980 and a M.S. in Computer Science from
the University of Namur, Belgium, in 1988. His research interests are requirements
engineering, computer networks and security in these systems, and formal methods for
dealing with information system security.

