Skip to main content

Single B Cell Cloning and Production of Rabbit Monoclonal Antibodies

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2070))

Abstract

Monoclonal antibodies are among the most significant biological tools used in medicine and biology that have revolutionized the field of diagnostics, therapeutics, and targeted drug delivery systems for many diseases. Among them, rabbit monoclonal antibodies have attracted significant attention for having high affinity and specificity. During the past few decades, different techniques have been developed to produce monoclonal antibodies. Single B cell cloning technology offers many advantages compared to other methods and has been used to generate monoclonal antibodies from different species including rabbits. This review briefly describes some of these methods, with main focus on single B cell cloning and production of rabbit monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  2. Tansey EM, Catterall PP (1994) Monoclonal antibodies: a witness seminar in contemporary medical history. Med Hist 38:322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang H, Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9:1773–1781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Henricks LM, Schellens JH, Huitema AD et al (2015) The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat Rev 41:859–867

    Article  CAS  PubMed  Google Scholar 

  5. Siddiqui MZ (2010) Monoclonal antibodies as diagnostics; an appraisal. Indian J Pharm Sci 72:12–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–316

    Article  CAS  PubMed  Google Scholar 

  7. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  CAS  PubMed  Google Scholar 

  8. Reichert JM (2017) Antibodies to watch in 2017. MAbs 9:167–181

    Article  CAS  PubMed  Google Scholar 

  9. Kaplon H, Reichert JM (2018) Antibodies to watch in 2018. MAbs 10:183–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossi S, Laurino L, Furlanetto A et al (2005) Rabbit monoclonal antibodies: a comparative study between a novel category of immunoreagents and the corresponding mouse monoclonal antibodies. Am J Clin Pathol 124:295–302

    Article  CAS  PubMed  Google Scholar 

  11. Weber J, Peng H, Rader C (2017) From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med 49:e305. https://doi.org/10.1038/emm.2017.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Landry JP, Ke Y, Yu GL et al (2015) Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform. J Immunol Methods 417:86–96

    Article  CAS  PubMed  Google Scholar 

  13. Shawler DL, Bartholomew RM, Smith LM et al (1985) Human immune response to multiple injections of murine monoclonal IgG. J Immunol 135:1530–1535

    CAS  PubMed  Google Scholar 

  14. Rader C, Ritter G, Nathan S et al (2000) The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies. J Biol Chem 275:13668–13676

    Article  CAS  PubMed  Google Scholar 

  15. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  16. Murai T, Ueda M, Yamamura M et al (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rakestraw JA, Aird D, Aha PM et al (2011) Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 24:525–530

    Article  CAS  PubMed  Google Scholar 

  18. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spieker-Polet H, Sethupathi P, Yam PC et al (1995) Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci U S A 92:9348–9352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yam PC, Knight KL (2014) Generation of rabbit monoclonal antibodies. Methods Mol Biol 1131:71–79

    Article  CAS  PubMed  Google Scholar 

  21. Tiller T (2011) Single B cell antibody technologies. New Biotechnol 28:453–457

    Article  CAS  Google Scholar 

  22. Smith K, Garman L, Wrammert J et al (2009) Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4:372–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clargo AM, Hudson AR, Ndlovu W et al (2014) The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method. MAbs 6:143–159

    Article  PubMed  Google Scholar 

  24. Holzlohner P, Hanack K (2017) Generation of murine monoclonal antibodies by hybridoma technology. J Vis Exp 119. https://doi.org/10.3791/54832

  25. Raybould TJ, Takahashi M (1988) Production of stable rabbit-mouse hybridomas that secrete rabbit mAb of defined specificity. Science 240:1788–1790

    Article  CAS  PubMed  Google Scholar 

  26. Yarmush ML, Gates FT 3rd, Weisfogel DR et al (1980) Identification and characterization of rabbit-mouse hybridomas secreting rabbit immunoglobulin chains. Proc Natl Acad Sci U S A 77:2899–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dreher K, Sogn JA, Gates FT 3rd et al (1983) Allotype-defined mRNA for rabbit immunoglobulin H and L chains isolated from rabbit-mouse hybridomas. J Immunol 130:442–448

    CAS  PubMed  Google Scholar 

  28. Pytela R, Zhu W, Ke Y et al (2005) Fusion partner for production of monoclonal rabbit antibodies US Patent US7429487B2

    Google Scholar 

  29. Dessain SK, Adekar SP, Stevens JB et al (2004) High efficiency creation of human monoclonal antibody-producing hybridomas. J Immunol Methods 291:109–122

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Sai T, Berger M et al (2006) Human antibodies for immunotherapy development generated via a human B cell hybridoma technology. Proc Natl Acad Sci U S A 103:3557–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Breitling F, Dubel S, Seehaus T et al (1991) A surface expression vector for antibody screening. Gene 104:147–153

    Article  CAS  PubMed  Google Scholar 

  32. McCafferty J, Griffiths AD, Winter G et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  33. Barbas CF 3rd, Kang AS, Lerner RA et al (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hammers CM, Stanley JR (2014) Antibody phage display: technique and applications. J Invest Dermatol 134:1–5

    Article  PubMed  CAS  Google Scholar 

  35. Pande J, Szewczyk MM, Grover AK (2010) Phage display: concept, innovations, applications and future. Biotechnol Adv 28:849–858

    Article  CAS  PubMed  Google Scholar 

  36. Sidhu SS, Li B, Chen Y et al (2004) Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol 338:299–310

    Article  CAS  PubMed  Google Scholar 

  37. Rakonjac J, Russel M, Khanum S et al (2017) Filamentous phage: structure and biology. Adv Exp Med Biol 1053:1–20

    Article  CAS  PubMed  Google Scholar 

  38. Ledsgaard L, Kilstrup M, Karatt-Vellatt A et al (2018) Basics of antibody phage display technology. Toxins 10:236. https://doi.org/10.3390/toxins10060236

    Article  CAS  PubMed Central  Google Scholar 

  39. Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomic Proteomic 1:189–203

    Article  CAS  PubMed  Google Scholar 

  40. Frenzel A, Kugler J, Helmsing S et al (2017) Designing human antibodies by phage display. Transfus Med Hemother 44:312–318

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moghaddam A, Borgen T, Stacy J et al (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155

    Article  CAS  PubMed  Google Scholar 

  42. Blokzijl A, Zieba A, Hust M et al (2016) Single chain antibodies as tools to study transforming growth factor-beta-regulated SMAD proteins in proximity ligation-based pharmacological screens. Mol Cell Proteomics 15:1848–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Liu H, Guan Q et al (2017) Advances in the isolation of specific monoclonal rabbit antibodies. Front Immunol 8:494. https://doi.org/10.3389/fimmu

    Article  PubMed  PubMed Central  Google Scholar 

  44. Starkie DO, Compson JE, Rapecki S et al (2016) Generation of recombinant monoclonal antibodies from immunised mice and rabbits via flow cytometry and sorting of antigen-specific IgG+ memory B cells. PLoS One 11:e0152282. https://doi.org/10.1371/journal.pone.0152282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pattengale PK, Smith RW, Gerber P (1973) Selective transformation of B lymphocytes by E.B. virus. Lancet 2:93–94

    Article  CAS  PubMed  Google Scholar 

  46. Kozbor D, Roder JC (1981) Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique. J Immunol 127:1275–1280

    CAS  PubMed  Google Scholar 

  47. Beerli RR, Rader C (2010) Mining human antibody repertoires. MAbs 2:365–378

    Article  PubMed  Google Scholar 

  48. Shammah S, Mantovani TL, Dalla-Favera R et al (1993) Generation of human monoclonal antibodies by transformation of lymphoblastoid B cells with ras oncogene. J Immunol Methods 160:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rashidian J, Copaciu R, Su Q et al (2017) Generation and performance of R132H mutant IDH1 rabbit monoclonal antibody. Antibodies 6. https://doi.org/10.3390/antib6040022

    Article  PubMed Central  CAS  Google Scholar 

  50. Ouisse LH, Gautreau-Rolland L, Devilder MC et al (2017) Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies. BMC Biotechnol 17:3. https://doi.org/10.1186/s12896-016-0322-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuppers R, Zhao M, Hansmann ML et al (1993) Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 12:4955–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tiller T, Meffre E, Yurasov S et al (2008) Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329:112–124

    Article  CAS  PubMed  Google Scholar 

  53. Lagerkvist AC, Furebring C, Borrebaeck CA (1995) Single, antigen-specific B cells used to generate Fab fragments using CD40-mediated amplification or direct PCR cloning. BioTechniques 18:862–869

    CAS  PubMed  Google Scholar 

  54. Jin A, Ozawa T, Tajiri K et al (2011) A Rapid isolation of antigen-specific antibody-secreting cells using a chip-based immunospot array. Nat Protoc 6:668–676

    Article  CAS  PubMed  Google Scholar 

  55. Park S, Han J, Kim W et al (2011) Rapid selection of single cells with high antibody production rates by microwell array. J Biotechnol 156:197–202

    Article  CAS  PubMed  Google Scholar 

  56. Meijer PJ, Andersen PS, Haahr Hansen M et al (2006) Isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J Mol Biol 358:764–772

    Article  CAS  PubMed  Google Scholar 

  57. Franz B, May KF Jr, Dranoff G et al (2011) Ex vivo characterization and isolation of rare memory B cells with antigen tetramers. Blood 118:348–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amanna IJ, Slifka MK (2006) Quantitation of rare memory B cell populations by two independent and complementary approaches. J Immunol Methods 317:175–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doucett VP, Gerhard W, Owler K et al (2005) Enumeration and characterization of virus-specific B cells by multicolor flow cytometry. J Immunol Methods 303:40–52

    Article  CAS  PubMed  Google Scholar 

  60. Di Niro R, Mesin L, Raki M et al (2010) Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J Immunol 185:5377–5383

    Article  PubMed  CAS  Google Scholar 

  61. Tiller T, Busse CE, Wardemann H (2009) Cloning and expression of murine Ig genes from single B cells. J Immunol Methods 350:183–193

    Article  CAS  PubMed  Google Scholar 

  62. Kurosawa N, Yoshioka M, Fujimoto R et al (2012) Rapid production of antigen-specific monoclonal antibodies from a variety of animals. BMC Biol 10:80. https://doi.org/10.1186/1741-7007-10-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seeber S, Ros F, Thorey I et al (2014) A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood. PLoS One 9:e86184. https://doi.org/10.1371/journal.pone.0086184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ozawa T, Kishi H, Muraguchi A (2006) Amplification and analysis of cDNA generated from a single cell by 5′-RACE: application to isolation of antibody heavy and light chain variable gene sequences from single B cells. BioTechniques 40:469–470

    Article  CAS  PubMed  Google Scholar 

  65. Liao HX, Levesque MC, Nagel A et al (2009) High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J Virol Methods 158:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ojima-Kato T, Hashimura D, Kojima T et al (2015) In vitro generation of rabbit anti-Listeria monocytogenes monoclonal antibody using single cell based RT-PCR linked cell-free expression systems. J Immunol Methods 427:58–65

    Article  CAS  PubMed  Google Scholar 

  67. Kivi G, Teesalu K, Parik J et al (2016) HybriFree: a robust and rapid method for the development of monoclonal antibodies from different host species. BMC Biotechnol 16:2. https://doi.org/10.1186/s12896-016-0232-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gray SA, Moore M, VandenEkart EJ et al (2016) Selection of therapeutic H5N1 monoclonal antibodies following IgVH repertoire analysis in mice. Antivir Res 131:100–108

    Article  CAS  PubMed  Google Scholar 

  69. Reddy ST, Ge X, Miklos AE et al (2010) Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol 28:965–969

    Article  CAS  PubMed  Google Scholar 

  70. Saggy I, Wine Y, Shefet-Carasso L et al (2012) Antibody isolation from immunized animals: comparison of phage display and antibody discovery via V gene repertoire mining. Protein Eng Des Sel 25:539–549

    Article  CAS  PubMed  Google Scholar 

  71. Wang B, Kluwe CA, Lungu OI et al (2015) Facile discovery of a diverse panel of anti-Ebola virus antibodies by immune repertoire mining. Sci Rep 5:13926. https://doi.org/10.1038/srep13926

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliet Rashidian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rashidian, J., Lloyd, J. (2020). Single B Cell Cloning and Production of Rabbit Monoclonal Antibodies. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics