Skip to main content

Modeling Podocyte Biology Using Drosophila Nephrocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2067))

Abstract

Vertebrate podocytes are kidney glomerular cells critically required for normal renal filtration. To fulfill their role, podocytes form molecular sieves known as slit diaphragms that contribute to the glomerular filtration barrier. The disruption of podocyte biology or slit diaphragm formation in humans is a precursor to albuminuria, renal failure, and cardiovascular morbidity. Due to genetic and functional similarities, the nephrocytes of Drosophila are increasingly used to model the genetic and metabolic basis of human podocyte biology. They have the advantage that they are a much quicker system to study compared to other murine transgenic models. In this chapter we present methods to modulate and study Drosophila nephrocyte function and diaphragm formation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhuang S et al (2009) Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136(14):2335–2344

    Article  CAS  Google Scholar 

  2. Weavers H et al (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457(7227):322–326

    Article  CAS  Google Scholar 

  3. Hartley PS et al (2016) SPARC-dependent cardiomyopathy in Drosophila. Circ Cardiovasc Genet 9(2):119–129

    Article  CAS  Google Scholar 

  4. Hermle T et al (2017) Modeling monogenic human nephrotic syndrome in the Drosophila garland cell nephrocyte. J Am Soc Nephrol 28(5):1521–1533

    Article  CAS  Google Scholar 

  5. Ivy JR et al (2015) Klf15 is critical for the development and differentiation of Drosophila Nephrocytes. PLoS One 10(8):e0134620

    Article  Google Scholar 

  6. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  7. Kimbrell DA et al (2002) The Dorothy enhancer has Tinman binding sites and drives hopscotch-induced tumor formation. Genesis 34(1-2):23–28

    Article  CAS  Google Scholar 

  8. Chen TW et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  Google Scholar 

  9. Ja WW et al (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A 104(20):8253–8256

    Article  CAS  Google Scholar 

  10. Reiser J et al (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37(7):739–744

    Article  CAS  Google Scholar 

  11. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  12. Bootman MD et al (2013) Ca2+−sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb Protoc 2013(2):83–99

    PubMed  Google Scholar 

  13. Greenspan, R.J., Fly pushing: the theory and practice of Drosophila genetics. 2. 2004, New York: Cold Spring Harbor Laboratory Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Hartley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hartley, P.S., Coward, R.J. (2020). Modeling Podocyte Biology Using Drosophila Nephrocytes. In: Gnudi, L., Long, D. (eds) Diabetic Nephropathy. Methods in Molecular Biology, vol 2067. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9841-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9841-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9840-1

  • Online ISBN: 978-1-4939-9841-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics