Skip to main content

Cell Recovery of Hydrogel-Encapsulated Cells for Molecular Analysis

  • Protocol
  • First Online:
Theranostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2054))

Abstract

Tissue engineering technologies have produced controllable and reproducible three-dimensional (3D) models that mimic the architecture and complexity of native tissues. In particular cell biology-based research is driven by the development of cell culture platforms and techniques that allow the analysis of cells cultured in 3D. Here we summarize several easy-to-follow methods for the characterization of cells that have been encapsulated and grown in hydrogels to measure their cell viability, metabolic activity, and mechanical properties of cell-containing hydrogels. We also describe an enzymatic approach for the digestion of cell-containing hydrogels and cell recovery thereby maintaining high cell viability for subsequent analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loessner D, Holzapfel BM, Clements JA (2014) Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses. Adv Drug Deliv Rev 79-80:193–213. https://doi.org/10.1016/j.addr.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  2. Vennin C, Chin VT, Warren SC, Lucas MC, Herrmann D, Magenau A et al (2017) Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci Transl Med 9(384). https://doi.org/10.1126/scitranslmed.aai8504

    Article  Google Scholar 

  3. De Jaeghere E, De Vlieghere E, Van Hoorick J, Van Vlierberghe S, Wagemans G, Pieters L et al (2018) Heterocellular 3D scaffolds as biomimetic to recapitulate the tumor microenvironment of peritoneal metastases in vitro and in vivo. Biomaterials 158:95–105. https://doi.org/10.1016/j.biomaterials.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Tan Y, Zhang H, Zhang Y, Xu P, Chen J et al (2012) Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater 11(8):734–741. https://doi.org/10.1038/nmat3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34(5):394–407. https://doi.org/10.1016/j.tibtech.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890. https://doi.org/10.1002/pmic.200900758

    Article  CAS  PubMed  Google Scholar 

  7. Tabriz AG, Hermida MA, Leslie NR, Shu W (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 7(4):045012. https://doi.org/10.1088/1758-5090/7/4/045012

    Article  PubMed  Google Scholar 

  8. Highley CB, Prestwich GD, Burdick JA (2016) Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol 40:35–40. https://doi.org/10.1016/j.copbio.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Cavo M, Caria M, Pulsoni I, Beltrame F, Fato M, Scaglione S (2018) A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo”. Sci Rep 8(1):5333. https://doi.org/10.1038/s41598-018-23250-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P et al (2018) 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 163:185–197. https://doi.org/10.1016/j.biomaterials.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  11. Tang Y, Huang B, Dong Y, Wang W, Zheng X, Zhou W et al (2017) Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy. J Biomater Sci Polym Ed 28(14):1603–1616. https://doi.org/10.1080/09205063.2017.1338502

    Article  CAS  PubMed  Google Scholar 

  12. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414

    Article  CAS  Google Scholar 

  13. Studle C, Vallmajo-Martin Q, Haumer A, Guerrero J, Centola M, Mehrkens A et al (2018) Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials 171:219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025

    Article  CAS  PubMed  Google Scholar 

  14. Yue X, Nguyen TD, Zellmer V, Zhang S, Zorlutuna P (2018) Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials 170:37–48. https://doi.org/10.1016/j.biomaterials.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  15. Hedegaard CL, Collin EC, Redondo-Gómez C, Nguyen LTH, Ng KW, Castrejón-Pita AA et al (2018) Hydrodynamically guided hierarchical self-assembly of peptide–protein bioinks. Adv Funct Mater 28(16). https://doi.org/10.1002/adfm.201703716

    Article  Google Scholar 

  16. Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC (2010) Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31(32):8494–8506. https://doi.org/10.1016/j.biomaterials.2010.07.064

    Article  CAS  PubMed  Google Scholar 

  17. Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D (2014) Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 10(6):2551–2562. https://doi.org/10.1016/j.actbio.2014.02.035

    Article  CAS  PubMed  Google Scholar 

  18. Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA et al (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746. https://doi.org/10.1038/nprot.2016.037

    Article  CAS  PubMed  Google Scholar 

  19. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW et al (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561. https://doi.org/10.1002/mabi.201200471

    Article  CAS  PubMed  Google Scholar 

  20. Bartnikowski M, Bartnikowski NJ, Woodruff MA, Schrobback K, Klein TJ (2015) Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater 27:66–76. https://doi.org/10.1016/j.actbio.2015.08.038

    Article  CAS  PubMed  Google Scholar 

  21. Erkoc P, Seker F, Bagci-Onder T, Kizilel S (2018) Gelatin methacryloyl hydrogels in the absence of a crosslinker as 3D glioblastoma multiforme (GBM)-mimetic microenvironment. Macromol Biosci 18(3). https://doi.org/10.1002/mabi.201700369

    Article  Google Scholar 

  22. McBeth C, Lauer J, Ottersbach M, Campbell J, Sharon A, Sauer-Budge AF (2017) 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication 9(1):015009. https://doi.org/10.1088/1758-5090/aa53bd

    Article  CAS  PubMed  Google Scholar 

  23. Valdez J, Cook CD, Ahrens CC, Wang AJ, Brown A, Kumar M et al (2017) On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials 130:90–103. https://doi.org/10.1016/j.biomaterials.2017.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonnier F, Keating ME, Wrobel TP, Majzner K, Baranska M, Garcia-Munoz A et al (2015) Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicol In Vitro 29(1):124–131. https://doi.org/10.1016/j.tiv.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  25. Delaine-Smith RM, Burney S, Balkwill FR, Knight MM (2016) Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics. J Mech Behav Biomed Mater 60:401–415. https://doi.org/10.1016/j.jmbbm.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  26. Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109(1–3):256–274. https://doi.org/10.1016/j.jconrel.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  27. Brown MA, Wallace CS, Anamelechi CC, Clermont E, Reichert WM, Truskey GA (2007) The use of mild trypsinization conditions in the detachment of endothelial cells to promote subsequent endothelialization on synthetic surfaces. Biomaterials 28(27):3928–3935. https://doi.org/10.1016/j.biomaterials.2007.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quent VM, Loessner D, Friis T, Reichert JC, Hutmacher DW (2010) Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J Cell Mol Med 14(4):1003–1013. https://doi.org/10.1111/j.1582-4934.2010.01013.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Michelle Lockley for providing Ovcar-4 cells, Dr. Laura Lecker for her assistance and guidance with the GelMa synthesis, and acknowledge the technical assistance of the microscopy and flow cytometry facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Loessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peerani, E., Candido, J.B., Loessner, D. (2019). Cell Recovery of Hydrogel-Encapsulated Cells for Molecular Analysis. In: Batra, J., Srinivasan, S. (eds) Theranostics. Methods in Molecular Biology, vol 2054. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9769-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9769-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9768-8

  • Online ISBN: 978-1-4939-9769-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics