Skip to main content

Immunohistochemistry and Fluorescent Whole Mount RNA In Situ Hybridization in Larval and Adult Brains of Tribolium

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

Abstract

Arthropod brains are fascinating structures that exhibit great complexity but also contain conserved elements that can be recognized between species. There is a long tradition of research in insect neuroanatomy, cell biology, and in studying the genetics of insect brain development. Recently, the beetle Tribolium castaneum has gained attention as a model for insect head and brain development, and many anterior patterning genes have so far been characterized in beetle embryos. The outcome of embryonic anterior development is the larval and, subsequently, the adult brain. A basic requirement to understand genetic cell type diversity within these structures is the ability to localize mRNA and protein of neural genes. Here we detail our protocols for RNA in situ hybridization in combination with immunohistochemistry, optimized for dissected brains of larval and adult beetles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity (Edinb) 94:465–477

    Article  CAS  Google Scholar 

  2. Younossi-Hartenstein A, Green P, Liaw GJ et al (1997) Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol 182:270–283

    Google Scholar 

  3. Hirth F (2003) An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130:2365–2373

    Article  CAS  Google Scholar 

  4. Boyan G, Williams L (2011) Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila. Arthropod Struct Dev 40:334–348

    Article  Google Scholar 

  5. Boyan GS, Reichert H (2011) Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 34:247–257

    Article  CAS  Google Scholar 

  6. Ludwig P, Williams JLD, Lodde E et al (1999) Neurogenesis in the median domain of the embryonic brain of the grasshopper Schistocerca gregaria. J Comp Neurol 414:379–390

    Article  CAS  Google Scholar 

  7. Posnien N, Koniszewski NDB, Hein HJ, Bucher G (2011) Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLoS Genet 7:e1002416

    Article  CAS  Google Scholar 

  8. Koniszewski NDB, Kollmann M, Bigham M et al (2016) The insect central complex as model for heterochronic brain development—background, concepts, and tools. Dev Genes Evol 226:209–219

    Article  CAS  Google Scholar 

  9. Richards S, Gibbs RA, Weinstock GM et al (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Google Scholar 

  10. Gilles AF, Schinko JB, Averof M (2015) Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 142:2832–2839

    Article  CAS  Google Scholar 

  11. Schinko JB, Hillebrand K, Bucher G (2012) Heat shock-Mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol 222:287–298

    Article  CAS  Google Scholar 

  12. Schinko JB, Weber M, Viktorinova I et al (2010) Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC Dev Biol 10

    Article  Google Scholar 

  13. Schmitt-Engel C, Schultheis D, Schwirz J et al (2015) The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat Commun 6

    Google Scholar 

  14. Farnworth MS, Eckermann KN, Ahmed HM et al (2019) The red flour beetle as model for comparative neural development: genome editing to mark neural cells in Tribolium brain development. Methods Brain Develop

    Google Scholar 

  15. Posnien N, Schinko JB, Kittelmann S, Bucher G (2010) Genetics, development and composition of the insect head—a beetle’s view. Arthropod Struct Dev 39:399–410

    Article  Google Scholar 

  16. Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    Article  Google Scholar 

  17. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  18. Büscher M, Oberhofer G, Garcia-Perez NC, Bucher G (2019) A protocol for double in situ hybridization and immunohistochemistry for the study of embryonic brain development in Tribolium castaneum. Methods Brain Develop

    Google Scholar 

  19. Hunnekuhl VS, Akam M (2014) An anterior medial cell population with an apical-organ-like transcriptional profile that pioneers the central nervous system in the centipede Strigamia maritima. Dev Biol 396:136–149

    Article  CAS  Google Scholar 

  20. Yoshida-Noro C, Myohara M, Kobari F, Tochinai S (2000) Nervous system dynamics during fragmentation and regeneration in Enchytraeus japonensis (Oligochaeta, Annelida). Dev Genes Evol 210:311–319

    Article  CAS  Google Scholar 

  21. Bodies E, Dakou E, Vanbekbergen N et al (2014) Whole-mount in situ hybridization (WISH) optimized for gene expression analysis in mouse embryos and embryoid bodies. In: Nielsen B (ed) In situ hybridization protocols, Methods in molecular biology (methods and protocols), vol 1211. Humana Press, New York, NY

    Google Scholar 

  22. Schinko J, Posnien N, Kittelmann S et al (2009) Single and double whole-mount in situ hybridization in red flour beetle (Tribolium) embryos. Cold Spring Harb Protoc 4:1–5

    Google Scholar 

  23. Dearden PK, Akam M (2001) Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development 128:3435–3444

    Google Scholar 

  24. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Bucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hunnekuhl, V.S., Siemanowski, J., Farnworth, M.S., He, B., Bucher, G. (2020). Immunohistochemistry and Fluorescent Whole Mount RNA In Situ Hybridization in Larval and Adult Brains of Tribolium. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics