Skip to main content

SWATH Mass Spectrometry Applied to Cerebrospinal Fluid Differential Proteomics: Establishment of a Sample-Specific Method

  • Protocol
  • First Online:
Cerebrospinal Fluid (CSF) Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2044))

Abstract

Mass spectrometry (MS) has become the gold standard method for proteomics by allowing the simultaneous identification and/or quantification of thousands of proteins of a given sample. Over time, mass spectrometry has evolved into newer quantitative approaches with increased sensitivity and accuracy, such as the sequential windows acquisition of all theoretical fragment-ion spectra (SWATH)-MS approach. Moreover, in the past few years, some improvements were made in the SWATH-acquisition algorithm, allowing the design of sample-customized acquisition methods by adjusting the Q1 windows’ width in order to reduce it in the most populated m/z regions. This customization results in an increase in the specificity and a reduction in the interferences, ultimately leading to an improvement in the amount of quantitative data extracted to eventually increase the proteome coverage. These improvements are especially relevant for clinical neuroproteomics, which is mainly based on the analysis of circulatory biofluids, in particular the cerebrospinal fluid (CSF) due to its close connection with the brain.

In the present chapter, a detailed description of the methodologies necessary to perform a whole-proteome relative quantification of CSF samples by SWATH-MS is presented, starting with the isolation of the protein fraction, its preparation for MS analysis, with all the necessary information for the design of a SWATH-MS method specific for each sample batch, and finally providing different methodologies for the analysis of the quantitative data obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nery TGM, Silva EM, Tavares R, Passetti F (2019) The challenge to search for new nervous system disease biomarker candidates: the opportunity to use the proteogenomics approach. J Mol Neurosci 67:150–164

    CAS  PubMed  Google Scholar 

  2. Anjo SI, Santa C, Manadas B (2015) Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings. Proteomics 15(4):757–762. https://doi.org/10.1002/pmic.201400221

    Article  CAS  PubMed  Google Scholar 

  3. Loos G, Van Schepdael A, Cabooter D (2016) Quantitative mass spectrometry methods for pharmaceutical analysis. Philos Transact A Math Phys Eng Sci 374(2079):20150366. https://doi.org/10.1098/rsta.2015.0366

    Article  Google Scholar 

  4. Anjo SI, Santa C, Manadas B (2017) SWATH-MS as a tool for biomarker discovery: from basic research to clinical applications. Proteomics 17(3–4). https://doi.org/10.1002/pmic.201600278

    Article  Google Scholar 

  5. Santa C, Anjo SI, Mendes VM, Manadas B (2015) Neuroproteomics—LC-MS quantitative approaches. InTech, Rijeka

    Book  Google Scholar 

  6. Wahab MF, Dasgupta P, Kadjo A, Armstrong D (2016) Sampling frequency, response times and embedded signal filtration in fast, high efficiency liquid chromatography: a tutorial. Anal Chim Acta 907:31. https://doi.org/10.1016/j.aca.2015.11.043

    Article  CAS  PubMed  Google Scholar 

  7. Hunter C, Collins B, Gillet L, Aebersold R (2014) Increasing depth of coverage in data independent acquisition with acquisition improvements and higher sample loads. In: Proccedings of the 61st Annual ASMS Conference on Mass Spectrometry & Allied Topics, pp 15–19

    Google Scholar 

  8. Schilling B, Gibson BW, Hunter CL (2017) Generation of high-quality SWATH® acquisition data for label-free quantitative proteomics studies using TripleTOF® mass spectrometers. Methods Mol Biol 1550:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shoemaker LD, Achrol AS, Sethu P, Steinberg GK, Chang SD (2012) Clinical neuroproteomics and biomarkers: from basic research to clinical decision making. Neurosurgery 70(3):518–525. https://doi.org/10.1227/NEU.0b013e3182333a26

    Article  PubMed  Google Scholar 

  10. Tumani H, Teunissen C, Süssmuth S, Otto M, Ludolph AC, Brettschneider J (2008) Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev Mol Diagn 8(4):479–494

    Article  CAS  PubMed  Google Scholar 

  11. Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K (2016) Analysis of the cerebrospinal fluid proteome in Alzheimer’s disease. PLoS One 11(3):e0150672

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anjo SI, Simões I, Castanheira P, Grãos M, Manadas B (2018) A generic normalization method for proper quantification in untargeted proteomics screening. bioRxiv. https://doi.org/10.1101/307504

  13. Anjo SI, Lourenco AS, Melo MN, Santa C, Manadas B (2016) Unraveling mesenchymal stem cells’ dynamic secretome through nontargeted proteomics profiling. Methods Mol Biol 1416:521–549. https://doi.org/10.1007/978-1-4939-3584-0_32

    Article  CAS  PubMed  Google Scholar 

  14. Anjo SI, Santa C, Saraiva SC, Freitas K, Barah F, Carreira B, Araújo I, Manadas B (2017) Neuroproteomics using short GeLC-SWATH: from the evaluation of proteome changes to the clarification of protein function. Curr Proteomic Appr Appl Brain Funct:107–138

    Google Scholar 

  15. Scheeren PJH, Klous Z, Smit HC, Doornbos DA (1985) A software package for the orthogonal polynomial approximation of analytical signals, including a simulation program for chromatograms and spectra. Anal Chim Acta 171:45–60. https://doi.org/10.1016/S0003-2670(00)84183-5

    Article  CAS  Google Scholar 

  16. Rowlen KL, Duell KA, Avery JP, Birks JW (1989) Whole column detection: application to high-performance liquid chromatography. Anal Chem 61(23):2624–2630. https://doi.org/10.1021/ac00198a008

    Article  CAS  Google Scholar 

  17. Tang WH, Shilov IV, Seymour SL (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 7(9):3661–3667. https://doi.org/10.1021/pr070492f

    Article  CAS  PubMed  Google Scholar 

  18. Sennels L, Bukowski-Wills JC, Rappsilber J (2009) Improved results in proteomics by use of local and peptide-class specific false discovery rates. BMC Bioinformatics 10:179. https://doi.org/10.1186/1471-2105-10-179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou J-Y, Chen L, Zhang B, Tian Y, Liu T, Thomas SN, Chen L, Schnaubelt M, Boja E, Hiltke T (2017) Quality assessments of long-term quantitative proteomic analysis of breast cancer xenograft tissues. J Proteome Res 16(12):4523–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, Zhai L, Qu C, Zhang C, Li S, Wu F, Qi Y, Lu F, Xu P, Li X (2016) Comparative proteomic analysis of buffalo oocytes matured in vitro using iTRAQ technique. Sci Rep 6:31795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Margolin AA, Ong S-E, Schenone M, Gould R, Schreiber SL, Carr SA, Golub TR (2009) Empirical Bayes analysis of quantitative proteomics experiments. PLoS One 4(10):e7454

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. https://doi.org/10.1007/s00216-007-1486-6

    Article  CAS  PubMed  Google Scholar 

  23. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44

    Article  Google Scholar 

  24. Huang DW, Sherman BT, Lempicki RA (2008) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia (FCT) [PTDC/SAU-NMC/112183/2009, PTDC/NEU-NMC/0205/2012, PTDC/NEU-SCC/7051/2014, UID/NEU/04539/2013, UID/BIM/04773/2013, PEst-C/SAU/LA0001/2013-2014, POCI-01-0145-FEDER-016428 (ref.: SAICTPAC/0010/2015), POCI-01-0145-FEDER-029311 (ref.: PTDC/BTM-TEC/29311/2017), POCI-01-0145-FEDER-30943 (ref.: PTDC/MEC-PSQ/30943/2017)] and cofinanced by “COMPETE Programa Operacional Factores de Competitividade”, QREN; the European Union (FEDER—Fundo Europeu de Desenvolvimento Regional) and by The National Mass Spectrometry Network (RNEM) (POCI-01-0145-FEDER-402-022125) (ref.: ROTEIRO/0028/2013). Cátia Santa is supported by FCT PhD fellowship SFRH/BD/88419/2012, cofinanced by the European Social Fund (ESF) through the POCH—Programa Operacional do Capital Humano and national funds via FCT.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anjo, S.I., Santa, C., Manadas, B. (2019). SWATH Mass Spectrometry Applied to Cerebrospinal Fluid Differential Proteomics: Establishment of a Sample-Specific Method. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Cerebrospinal Fluid (CSF) Proteomics. Methods in Molecular Biology, vol 2044. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9706-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9706-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9705-3

  • Online ISBN: 978-1-4939-9706-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics