Skip to main content

ADAMTS7: Recombinant Protein Expression and Purification

  • Protocol
  • First Online:
ADAMTS Proteases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2043))

Abstract

ADAMTS7 is a secreted protease that is predominantly expressed in tissues of the cardiovascular system and tendon. Although recent evidence suggests that it may play a role in the etiology of coronary artery disease, its physiological function and substrates are unknown. The enzyme undergoes extensive posttranslational modifications, including chondroitin sulfate attachment, N and O-linked glycosylation, and a two-step activation process. For the benefit of scientists who study the function of ADAMTS7 and its role in disease, this chapter provides an introduction to the chemical and functional properties of the various ADAMTS7 domains, as well as a protocol for the recombinant expression and purification of ADAMTS7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mead TJ, McCulloch DR, Ho JC, Du Y, Adams SM, Birk DE, Apte SS (2018) The metalloproteinase-proteoglycans ADAMTS7 and ADAMTS12 provide an innate, tendon-specific protective mechanism against heterotopic ossification. JCI Insight 3(7):92941. https://doi.org/10.1172/jci.insight.92941

    Article  PubMed  Google Scholar 

  2. Bauer RC, Tohyama J, Cui J, Cheng L, Yang J, Zhang X, Ou K, Paschos GK, Zheng XL, Parmacek MS, Rader DJ, Reilly MP (2015) Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation 131(13):1202–1213. https://doi.org/10.1161/circulationaha.114.012669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Somerville RP, Longpre JM, Apel ED, Lewis RM, Wang LW, Sanes JR, Leduc R, Apte SS (2004) ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J Biol Chem 279(34):35159–35175. https://doi.org/10.1074/jbc.M402380200

    Article  CAS  PubMed  Google Scholar 

  4. Kessler T, Zhang L, Liu Z, Yin X, Huang Y, Wang Y, Fu Y, Mayr M, Ge Q, Xu Q, Zhu Y, Wang X, Schmidt K, de Wit C, Erdmann J, Schunkert H, Aherrahrou Z, Kong W (2015) ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation 131(13):1191–1201. https://doi.org/10.1161/circulationaha.114.014072

    Article  CAS  PubMed  Google Scholar 

  5. Gendron C, Kashiwagi M, Lim NH, Enghild JJ, Thogersen IB, Hughes C, Caterson B, Nagase H (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282(25):18294–18306. https://doi.org/10.1074/jbc.M701523200

    Article  CAS  PubMed  Google Scholar 

  6. de Groot R, Lane DA, Crawley JT (2015) The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis. Blood 125(12):1968–1975. https://doi.org/10.1182/blood-2014-08-594556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Groot R, Bardhan A, Ramroop N, Lane DA, Crawley JT (2009) Essential role of the disintegrin-like domain in ADAMTS13 function. Blood 113(22):5609–5616. https://doi.org/10.1182/blood-2008-11-187914

    Article  CAS  PubMed  Google Scholar 

  8. Gerhardt S, Hassall G, Hawtin P, McCall E, Flavell L, Minshull C, Hargreaves D, Ting A, Pauptit RA, Parker AE, Abbott WM (2007) Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J Mol Biol 373(4):891–902. https://doi.org/10.1016/j.jmb.2007.07.047

    Article  CAS  PubMed  Google Scholar 

  9. Mosyak L, Georgiadis K, Shane T, Svenson K, Hebert T, McDonagh T, Mackie S, Olland S, Lin L, Zhong X, Kriz R, Reifenberg EL, Collins-Racie LA, Corcoran C, Freeman B, Zollner R, Marvell T, Vera M, Sum PE, Lavallie ER, Stahl M, Somers W (2008) Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5. Protein Sci 17(1):16–21. https://doi.org/10.1110/ps.073287008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crawley JT, de Groot R, Xiang Y, Luken BM, Lane DA (2011) Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 118(12):3212–3221. https://doi.org/10.1182/blood-2011-02-306597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pos W, Crawley JT, Fijnheer R, Voorberg J, Lane DA, Luken BM (2010) An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood 115(8):1640–1649. https://doi.org/10.1182/blood-2009-06-229203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akiyama M, Takeda S, Kokame K, Takagi J, Miyata T (2009) Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci U S A 106(46):19274–19279. https://doi.org/10.1073/pnas.0909755106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang LW, Leonhard-Melief C, Haltiwanger RS, Apte SS (2009) Post-translational modification of thrombospondin type-1 repeats in ADAMTS-like 1/punctin-1 by C-mannosylation of tryptophan. J Biol Chem 284(44):30004–30015. https://doi.org/10.1074/jbc.M109.038059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verbij FC, Stokhuijzen E, Kaijen PH, van Alphen F, Meijer AB, Voorberg J (2016) Identification of glycans on plasma-derived ADAMTS13. Blood 128(21):e51–e58. https://doi.org/10.1182/blood-2016-06-720912

    Article  CAS  PubMed  Google Scholar 

  15. Anderson PJ, Kokame K, Sadler JE (2006) Zinc and calcium ions cooperatively modulate ADAMTS13 activity. J Biol Chem 281(2):850–857. https://doi.org/10.1074/jbc.M504540200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a British Heart Foundation grant awarded to Rens de Groot (PG/18/19/33584). Dirk Wildeboer, Danielle Egan, and Salvatore Santamaria provided valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rens de Groot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Groot, R. (2020). ADAMTS7: Recombinant Protein Expression and Purification. In: Apte, S. (eds) ADAMTS Proteases. Methods in Molecular Biology, vol 2043. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9698-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9698-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9697-1

  • Online ISBN: 978-1-4939-9698-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics