Skip to main content

NMR-Based Urinary Metabolomics Applications

  • Protocol
  • First Online:
Book cover NMR-Based Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2037))

Abstract

The field of metabolomics has been growing tremendously over the recent years and, consistent with that growth, a number of investigators have been looking at the potential of NMR-based urinary metabolomics for several applications. While such applications have shown promising results, there still remains an enormous amount of work to be done before this approach becomes accepted and widely used in clinical diagnostics and other biomedical applications. To achieve such goals, optimization of parameters and standardization of protocols are of paramount importance. In view of this, in this chapter, we present some recommended methods and procedures that can help researchers in the field. Furthermore, we have highlighted some of the challenges encountered in such applications and suggested some possible ways to overcome those challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckonert O, Keun H, Ebbels T, Bundy J, Holmes E, Lindon J, Nicholson J (2007) Metabolic profiling, metabolomics and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703. https://doi.org/10.1038/nprot.2007.376

    Article  CAS  PubMed  Google Scholar 

  2. Roessner U, Bowne J (2009) What is metabolomics all about? BioTechniques 46:363–365. https://doi.org/10.2144/000113133

    Article  CAS  PubMed  Google Scholar 

  3. Van QN, Veenstra TD, Issaq HJ (2011) Metabolic profiling for the Detection of Bladder Cancer. Curr Urol Rep 12(1):34–40

    Article  PubMed  Google Scholar 

  4. Duarte LF, Gil AM (2012) Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Prog Nucl Magn Reson Spectrosc 62:51–74

    Article  CAS  PubMed  Google Scholar 

  5. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(1-2):155–171

    Article  CAS  PubMed  Google Scholar 

  6. Weckweth W (2003) Metabolomics in Systems Biology. Annu Rev Plant Biol 54:669–689

    Article  Google Scholar 

  7. Duarte L, Diaz S, Gil A (2014) NMR metabolomics of human blood and urine in disease research. J Pharm Biomed Anal 93:17–26. https://doi.org/10.1016/j.jpba.2013.09.025

    Article  CAS  PubMed  Google Scholar 

  8. Bouatra S, Aziat F, Guo AC et al (2013) The Human Urine Metabolome. PLoS One 8(9):e73076. https://doi.org/10.1371/journal.pone.0073076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim K, Aronov P, Zakharkin S (2008) Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics 8:558–570. https://doi.org/10.1074/mcp.M800165-MCP2000

    Article  PubMed  Google Scholar 

  10. Serkova NJ, Niemann CU (2006) Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev Mol Diagn 6(5):717–731. https://doi.org/10.1586/14727159.6.5.717

    Article  CAS  PubMed  Google Scholar 

  11. Dunn W, Bailey N, Johnson H (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  12. Lehman-McKeeman LD, Car B (2004) Metabonomics: application in predictive and mechanistic toxicology. Toxicol Pathol 32:94–96. https://doi.org/10.1080/01926230490462084

    Article  Google Scholar 

  13. Wishart DS, Feunang YD, Marcu A et al (2018) (2013) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  CAS  PubMed  Google Scholar 

  14. Lauridsen M, Hansen SH, Jaroszewski JW, Cornnet C (2007) Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal Chem 79(3):1181–1186. https://doi.org/10.1021/ac061354x

    Article  CAS  PubMed  Google Scholar 

  15. Vitols C, Fu H (2006) Targeted profiling of common metabolites in urine. Chenomx, Edmonton, Alberta

    Google Scholar 

  16. Rosewell R, Vitols C (2006) Identifying metabolites in biofluids. Chenomx Inc, Edmonton, Alberta

    Google Scholar 

  17. Liu L, Mo H, Wei S, Raftery D (2012) Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance. Analyst 137(3):595–600. https://doi.org/10.1039/c2an15780b

    Article  CAS  PubMed  Google Scholar 

  18. Tang KW, Toh QC, Teo BW (2015) Normalisation of urinary biomarkers to creatinine for clinical practice and research--when and why. Singapore Med J 56(1):7–10. https://doi.org/10.11622/smedj.2015003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78(13):4430–4442. https://doi.org/10.1021/ac060209g

    Article  CAS  PubMed  Google Scholar 

  20. Chenomx NMR suite. http://www.chenomx.com/software/software.php

  21. Hao J, Liebeke M, Astle W, De lorio M, Bundy JG, Ebbels TM (2015) Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc 9(6):1416–1427. https://doi.org/10.1038/nprot.2014.090

    Article  CAS  Google Scholar 

  22. Friedrich N, Budde K, Suhre K, Volker U, John U, Felix SB et al (2015) Sex differences in urine metabolites related with risk of diabetes using NMR spectroscopy: results of the study of health in Pomerania. Metabolomics 11:1405–1415

    Article  CAS  Google Scholar 

  23. Barker M, Ravens W (2003) Partial least squares for discrimination. J Chemom 3:166–173

    Article  Google Scholar 

  24. Eriksson L, Johansson E, Kettaneh-Wold N, World S (2001) Multi- and megavariate data analysis-principles and applications. Umetrics Academy, Dublin OH

    Google Scholar 

  25. Jackson JE (1991) A user’s guide to principal components. Wiley, New York

    Book  Google Scholar 

  26. Nikulin AE, Dolenko B, Bezabeh T, Somoriaj RL (1998) Near-optimal region selection for feature space reduction: novel-preprocessing methods for classifying NMR spectra. NMR Biomed 11:209–216

    Article  CAS  PubMed  Google Scholar 

  27. Xiao J, Wishart DS (2011) Web-based inference of biological patterns, functions, and pathways from metabolomics data using metaboanlayst. Nat Protoc 6:743–760. https://doi.org/10.1038/nprot.2011.319

    Article  CAS  Google Scholar 

  28. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408. https://doi.org/10.1093/nar/gkm957

    Article  CAS  PubMed  Google Scholar 

  29. Ludwig C, Easton JM, Lodi A, Tiziani S, Manzoor SE, Southam AD et al (2012) Birmingham metabolite library. Metabolomics 8:8–18. https://doi.org/10.1007/s11306-011-0347-7

    Article  CAS  Google Scholar 

  30. Capati A, Ijare OB, Bezabeh T (2017) Diagnostic applications of nuclear magnetic resonance-based urinary metabolomics. Magn Reson Insights 10:1178623X17694346. https://doi.org/10.1177/1178623X17694346

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rasmussen LG, Winning H, Savorani F et al (2012) Assessment of the effect of high or low protein diet on the human urine metabolome as measured by NMR. Nutrients 4(2):112–131. https://doi.org/10.3390/nu4020112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lenz EM, Bright J, Wilson I et al (2004) Metabonomics, dietary influences and cultural differences: NMR-based study of urine samples obtained from healthy British and Swedish subjects. J Pharm Biomed Anal 36(4):841–849. https://doi.org/10.1016/j.pba.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  33. Dumas ME, Maibaum EC, Teague C et al (2006) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal Chem 78(7):2199–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zuppi C, Messana I, Forni F, Ferrari F, Rossi C, Giardina B (1998) Influence of feeding on metabolite excretion evidenced by urine 1H NMR spectral profiles: a comparison between subjects living in Rome and subjects living at arctic latitudes (Svaldbard). Clin Chim Acta 278:75–79

    Article  PubMed  Google Scholar 

  35. Jakobsen LM, Yde CC, Van Hecke T et al (2017) Impact of red meat consumption on the metabolome of rats. Mol Nutr Food Res 61(3). https://doi.org/10.1002/mnfr.201600387

    Article  Google Scholar 

  36. Slupsky CM, Rankin KN, Wagner J et al (2007) Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomics. Anal Chem 79(18):6995–7004

    Article  CAS  PubMed  Google Scholar 

  37. Psihogios N, Gazi I, Elisaf M, Seferiadis K, Bairaktari E (2008) Gender-related and age-related urinalysis of healthy subjects by NMR-based metabonomics. NMR Biomed 21:195–207. https://doi.org/10.1002/nbm.1176

    Article  CAS  PubMed  Google Scholar 

  38. Rist MJ, Muhle-Goll C, Gorling B, Bub A, Heissler S, Watzl B, Luy B (2012) Influence of freezing and storage procedure on human urine samples in NMR-based metabolomics. Metabolites 3:243–258. https://doi.org/10.3390/metabo3020243

    Article  CAS  Google Scholar 

  39. Saude EJ, Sykes BD (2007) Urine stability for metabolomics studies: effects of preparation and storage. Metabolomics 3:19–27. https://doi.org/10.1007/s11306-006-0042-2

    Article  CAS  Google Scholar 

  40. Rotter M, Brandmaier S, Prehn C et al (2017) Stability of targeted metabolite profiles of urine samples under different storage conditions. Metabolomics 13(1):4. https://doi.org/10.1007/s11306-016-1137-z

    Article  CAS  PubMed  Google Scholar 

  41. Keun HC, Ebbels TM, Antti H, Bollard ME, Beckonert O, Scholtterbeck G (2002) Analytical reproducibility in (1) H NMR-based metabonomic urinalysis. Chem Res Toxicol 15(11):1380–1386

    Article  CAS  PubMed  Google Scholar 

  42. Da Silva L, Godejohann M, Martin FP et al (2013) High –resolution quantitative metabolome analysis of urine by automated flow injection NMR. Anal Chem 84(12):5801–5809. https://doi.org/10.1021/ac4004776

    Article  CAS  Google Scholar 

  43. Miyataka H, Ozaki T, Himeno S (2007) Effect of pH on 1H-NMR spectroscopy of mouse urine. Biol Pharm Bull 30(4):667–670

    Article  CAS  PubMed  Google Scholar 

  44. Emwas AH, Luchinat C, Turano P, Tenori P, Roy R, Salek RM et al (2015) Standardizing the experimental conditions for using urine in NMR-based metabolomics studies with a particular focus on diagnostic studies: a review. Metabolomics 11(4):872–894. https://doi.org/10.1007/s11306-014-0746-7

    Article  CAS  PubMed  Google Scholar 

  45. Giraudeau P, Silvestre V, Akoka S (2015) Optimizing water suppression for quantitative NMR-based metabolomics: a tutorial review. Metabolomics 11:1041–1055. https://doi.org/10.1007/s11306-015-0794-7

    Article  CAS  Google Scholar 

  46. Emwas AH, Roy R, McKay RT et al (2016) Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis. J Proteome Res 15(2):360–373. https://doi.org/10.1021/acs.jproteome.5b00885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Le Guennec A, Tayyari F, Edison AS (2017) Alternatives to Nuclear Overhauser Enhancement Spectroscopy Presat and Carr—Purcell—Meiboom—Gill Presat for NMR-Based Metabolomics. Anal Chem 89(17):8582–8588. https://doi.org/10.1021/acs.analchem.7b02354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hertl J, Rotter M, Frenzel S et al (2018) Dilution correction for dynamically influenced urinary analyte data. Anal Chim Acta 1032:18–31. https://doi.org/10.1016/j.aca.2018.07.068

    Article  CAS  Google Scholar 

  49. Tredwell GD, Bundy JG, De lorio M, Ebbels TMD (2016) Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine. Metabolomics 12(10):152. https://doi.org/10.1007/s11306-016-1101-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cl L, Somorjai RL, Smith ICP, Russell P, Mountford CE (2002) Accurate diagnosis and prognosis of human cancers by proton MRS and a three-stage classification strategy. Annu Rep NMR Spectro 48:71–111

    Article  Google Scholar 

  51. Bezabeh T, Somorjai RL, Dolenko B et al (2009) Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed 22:593–600

    Article  CAS  PubMed  Google Scholar 

  52. Bezabeh T, Ijare OB, NIkulin AE, Somoriai R, Smith ICP (2014) MRS-based metabolomics in cancer research. Magn Reson Insights 7:1–14

    PubMed  PubMed Central  Google Scholar 

  53. Somorjai RL, Nikulin AE, Pizzi N et al (1995) Computerized consensus diagnosis: a classification strategy for the robust analysis of MR spectra. Application to 1H spectra of thyroid neoplasms. Magn Reson Med 33:257–263

    Article  CAS  PubMed  Google Scholar 

  54. Somorjai RL, Dolenko B, Nikulin AK et al (1996) Classification of 1H MR spectra of human brain neoplasms: the influence of preprocessing computerized consensus diagnosis on classification accuracy. J Magn Reson Imaging 6:437–433

    Article  CAS  PubMed  Google Scholar 

  55. Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, Everett JR (2016) A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol 12:135–153. https://doi.org/10.1016/j.csbj.2016.02.005

    Article  CAS  Google Scholar 

  56. Everett JR (2015) A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency. Comput Struct Biotechnol 13:131–144. https://doi.org/10.1016/j.csbj.2015.01.002

    Article  CAS  Google Scholar 

  57. Oman T, Tessem MB, Bathen TF, Bertilsson H, Angelsen A, Hedenstrom M, Andreassen T (2014) Identification of metabolites from 2D (1) H-(13)C HSQC NMR using peak correlation plots. Bioinformatics 15:413. https://doi.org/10.1186/s12859-014-0413-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tedros Bezabeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bezabeh, T., Capati, A., Ijare, O.B. (2019). NMR-Based Urinary Metabolomics Applications. In: Gowda, G., Raftery, D. (eds) NMR-Based Metabolomics. Methods in Molecular Biology, vol 2037. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9690-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9690-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9689-6

  • Online ISBN: 978-1-4939-9690-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics