Skip to main content

G-Quadruplex Visualization in Cells via Antibody and Fluorescence Probe

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

G-quadruplexes (G4s) are noncanonical nucleic acids structures involved in key regulatory and pathological roles in eukaryotes, prokaryotes, and viruses: the development of specific antibodies and fluorescent probes represent an invaluable tool to understand their biological relevance. We here present three protocols for the visualization of G4s in cells, both uninfected and HSV-1 infected, using a specific antibody and a fluorescent G4 ligand, and the effect of the fluorescent ligand on a G4 binding protein, nucleolin, upon binding of the molecule to the nucleic acids structure.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Folini M, Venturini L, Cimino-Reale G, Zaffaroni N (2011) Telomeres as targets for anticancer therapies. Expert Opin Ther Targets 15(5):579–593. https://doi.org/10.1517/14728222.2011.556621

    Article  CAS  PubMed  Google Scholar 

  2. Holder IT, Hartig JS (2014) A matter of location: influence of G-quadruplexes on Escherichia coli gene expression. Chem Biol 21(11):1511–1521. https://doi.org/10.1016/j.chembiol.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  3. Maizels N (2015) G4-associated human diseases. EMBO Rep 16(8):910–922

    Article  CAS  Google Scholar 

  4. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43(18):8627–8637. https://doi.org/10.1093/nar/gkv862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ou TM, Lu YJ, Tan JH, Huang ZS, Wong KY, Gu LQ (2008) G-quadruplexes: targets in anticancer drug design. ChemMedChem 3(5):690–713. https://doi.org/10.1002/cmdc.200700300

    Article  CAS  PubMed  Google Scholar 

  6. Perrone R, Nadai M, Poe JA, Frasson I, Palumbo M, Palu G, Smithgall TE, Richter SN (2013) Formation of a unique cluster of G-quadruplex structures in the HIV-1 nef coding region: implications for antiviral activity. PLoS One 8(8):e73121. https://doi.org/10.1371/journal.pone.0073121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perrone R, Nadai M, Frasson I, Poe JA, Butovskaya E, Smithgall TE, Palumbo M, Palu G, Richter SN (2013) A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J Med Chem 56(16):6521–6530. https://doi.org/10.1021/jm400914r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Artusi S, Nadai M, Perrone R, Biasolo MA, Palu G, Flamand L, Calistri A, Richter SN (2015) The herpes simplex virus-1 genome contains multiple clusters of repeated G-quadruplex: implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res 118:123–131. https://doi.org/10.1016/j.antiviral.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  9. Perrone R, Artusi S, Butovskaya E, Nadai M, Pannecouque C, Richter SN (2015) G-quadruplexes in the human immunodeficiency virus-1 and herpes simplex virus-1: new targets for antiviral activity by small molecules. IFMBE Proc 46:207–210. https://doi.org/10.1007/978-3-319-11776-8_50

    Article  Google Scholar 

  10. Amrane S, Kerkour A, Bedrat A, Vialet B, Andreola ML, Mergny JL (2014) Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J Am Chem Soc 136(14):5249–5252. https://doi.org/10.1021/ja501500c

    Article  CAS  PubMed  Google Scholar 

  11. Gowan SM, Harrison JR, Patterson L, Valenti M, Read MA, Neidle S, Kelland LR (2002) A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol Pharmacol 61(5):1154–1162. https://doi.org/10.1124/mol.61.5.1154

    Article  CAS  PubMed  Google Scholar 

  12. Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, Lim JKC, Von Hoff D, Anderes K, Rice WG (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69(19):7653–7661. https://doi.org/10.1158/0008-5472.CAN-09-1304

    Article  CAS  PubMed  Google Scholar 

  13. De Cian A, DeLemos E, Mergny JL, Teulade-Fichou MP, Monchaud D (2007) Highly efficient G-quadruplex recognition by bisquinolinium compounds. J Am Chem Soc 129(7):1856. https://doi.org/10.1021/ja067352b

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez R, Muller S, Yeoman JA, Trentesaux C, Riou JF, Balasubramanian S (2008) A novel small molecule that alters Shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc 130(47):15758. https://doi.org/10.1021/ja805615w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Largy E, Granzhan A, Hamon F, Verga D, Teulade-Fichou MP (2013) Visualizing the quadruplex: from fluorescent ligands to light-up probes. Top Curr Chem 330:111–177. https://doi.org/10.1007/128_2012_346

    Article  CAS  PubMed  Google Scholar 

  16. Vummidi BR, Alzeer J, Luedtke NW (2013) Fluorescent probes for G-quadruplex structures. Chembiochem 14(5):540–558. https://doi.org/10.1002/cbic.201200612

    Article  CAS  PubMed  Google Scholar 

  17. Beauvineau C, Guetta C, Teulade-Fichou MP, Mahuteau-Betzer F (2017) PhenDV, a turn-off fluorescent quadruplex DNA probe for improving the sensitivity of drug screening assays. Org Biomol Chem 15(34):7117–7121. https://doi.org/10.1039/c7ob01705g

    Article  CAS  PubMed  Google Scholar 

  18. Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5(3):182–186. https://doi.org/10.1038/Nchem.1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henderson A, Wu YL, Huang YC, Chavez EA, Platt J, Johnson FB, Brosh RM, Sen D, Lansdorp PM (2014) Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res 42(2):860–869. https://doi.org/10.1093/nar/gkt957

    Article  CAS  PubMed  Google Scholar 

  20. Biffi G, Tannahill D, Miller J, Howat WJ, Balasubramanian S (2014) Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One 9(7):e102711. https://doi.org/10.1371/journal.pone.0102711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoffmann RF, Moshkin YM, Mouton S, Grzeschik NA, Kalicharan RD, Kuipers J, Wolters AHG, Nishida K, Romashchenko AV, Postberg J, Lipps H, Berezikov E, Sibon OCM, Giepmans BNG, Lansdorp PM (2016) Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res 44(1):152–163. https://doi.org/10.1093/nar/gkv900

    Article  CAS  PubMed  Google Scholar 

  22. Yangyuoru PM, Di Antonio M, Ghimire C, Biffi G, Balasubramanian S, Mao HB (2015) Dual binding of an antibody and a small molecule increases the stability of TERRA G-quadruplex. Angew Chem Int Ed 54(3):910–913. https://doi.org/10.1002/anie.201408113

    Article  CAS  Google Scholar 

  23. Doria F, Nadai M, Zuffo M, Perrone R, Freccero M, Richter SN (2017) A red-NIR fluorescent dye detecting nuclear DNA G-quadruplexes: in vitro analysis and cell imaging. Chem Commun 53(14):2268–2271. https://doi.org/10.1039/c6cc08492c

    Article  CAS  Google Scholar 

  24. Laguerre A, Wong JMY, Monchaud D (2016) Direct visualization of both DNA and RNA quadruplexes in human cells via an uncommon spectroscopic method. Sci Rep 6:32141. https://doi.org/10.1038/Srep32141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carvalho J, Pereira E, Marquevielle J, Campello MPC, Mergny JL, Paulo A, Salgado GF, Queiroz JA, Cruz C (2018) Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie 144:144–152. https://doi.org/10.1016/j.biochi.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  26. Bugler B, Caizergues-Ferrer M, Bouche G, Bourbon H, Amalric F (1982) Detection and localization of a class of proteins immunologically related to a 100 KDa nucleolar protein. Eur J Biochem 128(2–3):475–480. https://doi.org/10.1111/j.1432-1033.1982.tb06989.x

    Article  CAS  PubMed  Google Scholar 

  27. Artusi S, Perrone R, Lago S, Raffa P, Di Iorio E, Palu G, Richter SN (2016) Visualization of DNA G-quadruplexes in herpes simplex virus 1-infected cells. Nucleic Acids Res 44(21):10343–10353. https://doi.org/10.1093/nar/gkw968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc-Oxford 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  Google Scholar 

  29. Perrone R, Doria F, Butovskaya E, Frasson I, Botti S, Scalabrin M, Lago S, Grande V, Nadai M, Freccero M, Richter SN (2015) Synthesis, binding and antiviral properties of potent core-extended naphthalene Diimides targeting the HIV-1 long terminal repeat promoter G-quadruplexes. J Med Chem 58(24):9639–9652. https://doi.org/10.1021/acs.jmedchem.5b01283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara N. Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nadai, M., Richter, S.N. (2019). G-Quadruplex Visualization in Cells via Antibody and Fluorescence Probe. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics