Skip to main content

ProPerDP: A Protein Persulfide Detection Protocol

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2007))

Abstract

Persulfide or polysulfide formation on Cys residues is emerging as an abundant protein posttranslational modification, with important regulatory functions. However, as many other Cys oxidative modifications, per- and polysulfides are relatively labile, dynamically interchanging species, which makes their intracellular detections challenging. Here we report our recently developed highly selective method, Protein Persulfide Detection Protocol (ProPerDP), which can detect protein per- and polysulfide species in isolated protein systems, in blood plasma, or in cells and tissue samples. The method is easy to use and relatively inexpensive and requires only readily commercially available reagents. The biggest advantage of ProPerDP compared to other previously published persulfide detecting methods is the fact that in this protocol, all thiol and persulfide species are appropriately alkylated before any cell lysis step. This greatly reduces the potential of detecting lysis-induced oxidation-driven artifact persulfide formation.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

A549:

Adenocarcinomic human alveolar basal epithelial cells

ACN:

Acetonitrile

BCA:

Bicinchoninic acid

BCIP:

5-Bromo-4-chloro-3′-indolyl phosphate p-toluidine salt

BSA:

Bovine serum albumin

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate

Cys:

Cysteine

DMEM-F12:

Dulbecco’s modified eagle medium with F12 nutrient mixture

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid), Ellman’s reagent

DTPA:

Diethylenetriaminepentaacetic acid

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

EMEM:

Eagle’s minimum essential medium

FBS:

Heat-inactivated fetal bovine serum

HBSS:

Hank’s Balanced Salt Solution

HEK293:

Human embryonic kidney cells 293

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HSA:

Human serum albumin

IAB:

EZ-Link™ Iodoacetyl-PEG2-Biotin

IAF:

5-Iodoacetamido fluorescein

IAM:

Iodoacetamide

NBT:

Nitro-blue tetrazolium chloride

PBS:

Phosphate-buffered saline

PIC:

Protease inhibitor cocktail

Pipes:

Piperazine-N,N′-bis(2-ethanesulfonic acid)

ProPerDP:

Protein persulfide detection protocol

PVDF:

Polyvinylidene fluoride

SB:

SDS sample buffer, nonreducing, 4×

TCEP:

Tris(2-carboxyethyl)phosphine

TE:

100 mM Tris–HCl, 2 mM EDTA, pH = 7.4

TNB-:

2-Nitro-5-thiobenzoate

TR/GR-null:

Mouse liver lacking thioredoxin reductase and glutathione reductase

Trx:

Thioredoxin

TTBS:

20 mM Tris, 0.5 M NaCl, pH 7.5 + 0.05% Tween 20

References

  1. Doka E, Pader I, Biro A, Johansson K, Cheng Q, Ballago K, Prigge JR, Pastor-Flores D, Dick TP, Schmidt EE, Arner ES, Nagy P (2016) A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv 2(1):e1500968. https://doi.org/10.1126/sciadv.1500968

    Article  CAS  Google Scholar 

  2. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu WT, Gazi SK, Barrow RK, Yang GD, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ARTN ra72. https://doi.org/10.1126/scisignal.2000464

    Article  Google Scholar 

  3. Nagy P (2015) Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol 554:3–29. https://doi.org/10.1016/bs.mie.2014.11.036

    Article  CAS  Google Scholar 

  4. Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111(21):7606–7611. https://doi.org/10.1073/pnas.1321232111

    Article  CAS  Google Scholar 

  5. Cuevasanta E, Moller MN, Alvarez B (2016) Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys. https://doi.org/10.1016/j.abb.2016.09.018

    Article  CAS  Google Scholar 

  6. Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR, Banerjee R (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138(1):289–299. https://doi.org/10.1021/jacs.5b10494

    Article  CAS  Google Scholar 

  7. Millikin R, Bianco CL, White C, Saund SS, Henriquez S, Sosa V, Akaike T, Kumagai Y, Soeda S, Toscano JP, Lin J, Fukuto JM (2016) The chemical biology of protein hydropersulfides: studies of a possible protective function of biological hydropersulfide generation. Free Radic Biol Med 97:136–147. https://doi.org/10.1016/j.freeradbiomed.2016.05.013

    Article  CAS  Google Scholar 

  8. Bianco CL, Chavez TA, Sosa V, Saund SS, Nguyen QN, Tantillo DJ, Ichimura AS, Toscano JP, Fukuto JM (2016) The chemical biology of the persulfide (RSSH)/perthiyl (RSS.) redox couple and possible role in biological redox signaling. Free Radic Biol Med 101:20–31. https://doi.org/10.1016/j.freeradbiomed.2016.09.020

    Article  CAS  Google Scholar 

  9. Bailey TS, Pluth MD (2015) Reactions of isolated persulfides provide insights into the interplay between H2S and persulfide reactivity. Free Radic Biol Med 89:662–667. https://doi.org/10.1016/j.freeradbiomed.2015.08.017

    Article  CAS  Google Scholar 

  10. Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, Hobbs AJ, Nagy P, Xian M, Lin J, Fukuto JM (2014) Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med 77:82–94. https://doi.org/10.1016/j.freeradbiomed.2014.09.007

    Article  CAS  Google Scholar 

  11. Jung M, Kasamatsu S, Matsunaga T, Akashi S, Ono K, Nishimura A, Morita M, Abdul Hamid H, Fujii S, Kitamura H, Sawa T, Ida T, Motohashi H, Akaike T (2016) Protein polysulfidation-dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1. Biochem Biophys Res Commun 480(2):180–186. https://doi.org/10.1016/j.bbrc.2016.10.022

    Article  CAS  Google Scholar 

  12. Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13(8):499–507. https://doi.org/10.1038/nrm3391

    Article  CAS  Google Scholar 

  13. Wedmann R, Onderka C, Wei S, Szijarto IA, Miljkovic JL, Mitrovic A, Lange M, Savitsky S, Yadav PK, Torregrossa R, Harrer EG, Harrer T, Ishii I, Gollasch M, Wood ME, Galardon E, Xian M, Whiteman M, Banerjee R, Filipovic MR (2016) Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci 7(5):3414–3426. https://doi.org/10.1039/c5sc04818d

    Article  CAS  Google Scholar 

  14. Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signaling 19(15):1749–1765. https://doi.org/10.1089/ars.2012.5041

    Article  CAS  Google Scholar 

  15. Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23(10):1541–1543. https://doi.org/10.1021/tx100266a

    Article  CAS  Google Scholar 

  16. Nagy P, Palinkas Z, Nagy A, Budai B, Toth I, Vasas A (2014) Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840(2):876–891. https://doi.org/10.1016/j.bbagen.2013.05.037

    Article  CAS  Google Scholar 

  17. Vasas A, Doka E, Fabian I, Nagy P (2015) Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide 46:93–101. https://doi.org/10.1016/j.niox.2014.12.003

    Article  CAS  Google Scholar 

  18. Shen X, Peter EA, Bir S, Wang R, Kevil CG (2012) Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic Biol Med 52(11–12):2276–2283. https://doi.org/10.1016/j.freeradbiomed.2012.04.007

    Article  CAS  Google Scholar 

  19. Wintner EA, Deckwerth TL, Langston W, Bengtsson A, Leviten D, Hill P, Insko MA, Dumpit R, VandenEkart E, Toombs CF, Szabo C (2010) A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. Br J Pharmacol 160(4):941–957. https://doi.org/10.1111/j.1476-5381.2010.00704.x

    Article  CAS  Google Scholar 

  20. Rabilloud T, Vuillard L, Gilly C, Lawrence JJ (1994) Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol 40(1):57–75

    CAS  Google Scholar 

  21. Havlis J, Thomas H, Sebela M, Shevchenko A (2003) Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75(6):1300–1306

    Article  CAS  Google Scholar 

  22. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858

    Article  CAS  Google Scholar 

  23. Eriksson S, Prigge JR, Talago EA, Arner ES, Schmidt EE (2015) Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun 6:6479. https://doi.org/10.1038/ncomms7479

    Article  CAS  Google Scholar 

  24. Longen S, Richter F, Kohler Y, Wittig I, Beck KF, Pfeilschifter J (2016) Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H2S releasing donors in mammalian cells. Sci Rep 6:29808. https://doi.org/10.1038/srep29808

    Article  CAS  Google Scholar 

  25. Alvarez B, Carballal S, Turell L, Radi R (2010) Formation and reactions of sulfenic acid in human serum albumin. Methods Enzymol 473:117–136. https://doi.org/10.1016/S0076-6879(10)73005-6

    Article  CAS  Google Scholar 

  26. Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239

    Article  CAS  Google Scholar 

  27. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26(3):501–510. https://doi.org/10.1002/elps.200410070

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Hungarian National Science Foundation (OTKA; grant no.: K109843, KH17_126766, and K18_129286) for P.N.; from the National Institutes of Health (grant no.: R21AG055022-01) for E.E.S., P.N., and E.S.J.A.; and from the Swedish Research Council, Swedish Cancer Society, and Karolinska Institutet for E.S.J.A. is acknowledged. P.N. is a János Bolyai Research Scholar of the Hungarian Academy of Sciences. Dojindo Molecular Technologies Inc. is greatly acknowledged for their kind support of chemical supplies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dóka, É., Arnér, E.S.J., Schmidt, E.E., Nagy, P. (2019). ProPerDP: A Protein Persulfide Detection Protocol. In: Bełtowski, J. (eds) Vascular Effects of Hydrogen Sulfide. Methods in Molecular Biology, vol 2007. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9528-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9528-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9527-1

  • Online ISBN: 978-1-4939-9528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics