Skip to main content

Ex Vivo Models of Chronic Granulomatous Disease

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Induced pluripotent stem cells (iPSCs) are pluripotent stem cells that can be established from dedifferentiation of all somatic cell types by epigenetic phenomena. iPSCs can be differentiated into any mature cells like neurons, hepatocytes, or pancreatic cells that have not been easily available to date. Thus, iPSCs are widely used for disease modeling, drug discovery, and cell therapy development. Here, we describe a protocol to obtain human mature and functional neutrophils and macrophages as ex vivo models of X-linked chronic granulomatous disease (X-CGD). This method can be applied to model the other genetic forms of CGD. We also describe methods for testing the characteristics and functions of neutrophils and macrophages by morphology, phagocytosis assay, release of granule markers or cytokines, cell surface markers, and NADPH oxidase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winkelstein JA, Marino MC, Johnston RB Jr et al (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 79:155–169

    Article  CAS  Google Scholar 

  2. Van den Berg JM, van Koppen E, Ahlin A et al (2009) Chronic granulomatous disease: the European experience. PLoS One 4:e5234

    Article  Google Scholar 

  3. Roos D, Kuhns DB, Maddalena A et al (2010) Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 45:246–265

    Article  CAS  Google Scholar 

  4. Roos D, Kuhns DB, Maddalena A et al (2010) Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis 44:291–299

    Article  CAS  Google Scholar 

  5. Van de Geer A, Nieto-Patlán A, Kuhns DB, et al (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128:3957-3975 

    Google Scholar 

  6. Gungor T, Teira P, Slatter M et al (2014) Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet 383:436–448

    Article  CAS  Google Scholar 

  7. Kang EM, Malech HL (2012) Gene therapy for chronic granulomatous disease. Methods Enzymol 507:125–154

    Article  CAS  Google Scholar 

  8. Zhen L, King AA, Xiao Y et al (1993) Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci U S A 90:9832–9983

    Article  CAS  Google Scholar 

  9. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  10. Scudellari M (2016) A decade of iPSCs. Nature 534:310–312

    Article  Google Scholar 

  11. Mukherjee S, Santilli G, Blundell MP et al (2011) Generation of functional neutrophils from a mouse model of X-linked chronic granulomatous disorder using induced pluripotent stem cells. PLoS One 6:e17565

    Article  CAS  Google Scholar 

  12. Jiang Y, Cowley SA, Siler U et al (2012) Derivation and functional analysis of patient-specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease. Stem Cells 30:599–611

    Article  CAS  Google Scholar 

  13. Brault J, Goutagny E, Telugu N et al (2014) Optimized generation of functional neutrophils and macrophages from patient-specific induced pluripotent stem cells: ex vivo models of X(0)-linked, AR22(0)- and AR47(0)-chronic granulomatous diseases. Biores Open Access 3:311–326

    Article  CAS  Google Scholar 

  14. Zou J, Sweeney CL, Chou BK et al (2011) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPSCs: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117:5561–5572

    Article  CAS  Google Scholar 

  15. Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood non-mobilized CD34+ cells. Blood 121:98–107

    Article  Google Scholar 

  16. Flynn R, Grundmann A, Renz P et al (2015) CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPSCs. Exp Hematol 43:838–848

    Article  CAS  Google Scholar 

  17. Dreyer AK, Hoffmann D, Lachmann N et al (2015) TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 69:191–200

    Article  CAS  Google Scholar 

  18. Merling RK, Sweeney CL, Chu J et al (2015) An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther 23:147–157

    Article  CAS  Google Scholar 

  19. Laugsch M, Rostovskaya M, Velychko S et al (2016) Functional restoration of gp91phox-oxidase activity by BAC transgenesis and gene targeting in X-linked chronic granulomatous disease iPSCs. Mol Ther 24:812–822

    Article  CAS  Google Scholar 

  20. Brault J, Vaganay G, Le Roy A, Lenormand JL, Cortes S, Stasia MJ (2017) Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. Int J Nanomedicine 12:2161–2177

    Article  CAS  Google Scholar 

  21. Zhou YY, Zeng F (2013) Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinformatics 11:284–287

    Article  CAS  Google Scholar 

  22. Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412

    Article  CAS  Google Scholar 

  23. Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6:e17557

    Article  CAS  Google Scholar 

  24. Villa-Diaz LG, Ross AM, Lahann J et al (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:1–7

    Article  CAS  Google Scholar 

  25. Fan Y, Wu J, Ashok P et al (2015) Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev 11:96–109

    Article  CAS  Google Scholar 

  26. Salvagiotto G, Burton S, Daigh CA et al (2011) A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PLoS One 6:e17829

    Article  CAS  Google Scholar 

  27. Senju S, Haruta M, Matsumura K et al (2011) Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther 18:874–883

    Article  CAS  Google Scholar 

  28. Yanagimachi MD, Niwa A, Tanaka T et al (2013) Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS One 8:e59243

    Article  CAS  Google Scholar 

  29. Choi KD, Vodyanik MA, Slukvin II (2009) Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J Clin Invest 119:2818–2829

    Article  CAS  Google Scholar 

  30. Morishima T, Watanabe K, Niwa A et al (2011) Neutrophil differentiation from human-induced pluripotent stem cells. J Cell Physiol 226:1283–1291

    Article  CAS  Google Scholar 

  31. Trocmé C, Gaudin P, Berthier S et al (1998) Human B lymphocytes synthesize the 92-kDa gelatinase, matrix metalloproteinase-9. J Biol Chem 273:20677–20684

    Article  Google Scholar 

  32. Vodyanik MA, Bork JA, Thomson JA (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105:617–626

    Article  CAS  Google Scholar 

  33. Vodyanik MA, Slukvin II (2007) Hematoendothelial differentiation of human embryonic stem cells. Curr Protoc Cell Biol Chapter 23:Unit 23:6

    Google Scholar 

  34. Choi K-D, Vodyanik M, Slukvin II (2011) Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc 6:296–313

    Article  CAS  Google Scholar 

  35. Yokoyama Y, Suzuki T, Sakata-Yanagimoto M et al (2009) Derivation of functional mature neutrophils from human embryonic stem cells. Blood 113:6584–6592

    Article  CAS  Google Scholar 

  36. Niwa A, Heike T, Umeda K et al (2011) A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 6:e22261

    Article  CAS  Google Scholar 

  37. Sweeney CL, Merling RK, Choi U et al (2014) Generation of functionally mature neutrophils from induced pluripotent stem cells. Methods Mol Biol 1124:189–206

    Article  Google Scholar 

  38. Kuhns DB, Long Priel DA, Chu J et al (2015) Isolation and functional analysis of human neutrophils. Curr Protoc Immunol 111:7.23.1–7.2316

    Article  Google Scholar 

  39. Stasia MJ, Li XJ (2008) Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol 30:209–235

    Article  Google Scholar 

  40. Roos D, de Boer M (2014) Molecular diagnosis of chronic granulomatous disease. Clin Exp Immunol 175:139–149

    Article  CAS  Google Scholar 

  41. Beaumel S, Picciocchi A, Debeurme F et al (2017) Down-regulation of NOX2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation. Free Radic Biol Med 113:1–15

    Article  CAS  Google Scholar 

  42. Nuutila J, Lilius E-M (2005) Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping population of binding and ingesting cells. Cytometry A 65A:93–102

    Article  Google Scholar 

  43. Greenlee-Wacker MC, Nauseef WM (2017) IFN-γ targets macrophage-mediated immune responses toward Staphylococcus aureus. J Leukoc Biol 101:751–758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MJS is grateful for the support from the University Grenoble Alpes (AGIR program 2014), the Faculty of Medicine and the Pole Recherche, University Hospital Grenoble Alpes, and Interreg France-Suisse (Programme de Cooperation Territoriale Europeenne, Fond Europeen de Developpement Regional (FEDER), 2017–2019). This work was also supported by the Delegation for Clinical Research and Innovations (DRCI, Rementips project 2014). We also thank Sylvain Beaumel and Michèle Mollin for their helpful and valuable work at the Centre Diagnostic et Recherche sur la CGD (CDiReC), Grenoble France. This article is dedicated to the memory of Cécile Martel, an outstanding technician at the CDiReC, who passed away recently. We miss you.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie José Stasia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brault, J., Vigne, B., Stasia, M.J. (2019). Ex Vivo Models of Chronic Granulomatous Disease. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics