Skip to main content

Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs

  • Protocol
  • First Online:
RNA Interference and Cancer Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1974))

Abstract

In RNA interference (RNAi), silencing is achieved through the interaction of double-stranded small interfering RNAs (siRNAs) with essential RNAi pathway proteins, including Argonaute 2 (Ago2). Based on these interactions, one strand of the siRNA is loaded into Ago2 forming the active RNA-induced silencing complex (RISC). Optimal siRNAs maximize RISC activity against the intended target and minimize off-target silencing. To achieve the desired activity and specificity, selection of the appropriate siRNA strand for loading into Ago2 is essential. Here, we provide a protocol to quantify the relative loading of individual siRNA strands into Ago2, one factor in determining the capacity of a siRNA to achieve silencing activity and target specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56(1):103–122. https://doi.org/10.1146/annurev-pharmtox-010715-103633

    Article  CAS  PubMed  Google Scholar 

  2. Scherman D, Rousseau A, Bigey P et al (2017) Genetic pharmacology: progresses in siRNA delivery and therapeutic applications. Gene Ther 24(3):151–156. https://doi.org/10.1038/gt.2017.6

    Article  CAS  PubMed  Google Scholar 

  3. Yoda M, Kawamata T, Paroo Z et al (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  4. Liu JD, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  CAS  PubMed  Google Scholar 

  5. Rivas FV, Tolia NH, Song JJ et al (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12(4):340–349

    Article  CAS  PubMed  Google Scholar 

  6. Martinez J, Patkaniowska A, Urlaub H et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574

    Article  CAS  PubMed  Google Scholar 

  7. Elbashir SM, Harborth J, Weber K et al (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26(2):199–213

    Article  CAS  PubMed  Google Scholar 

  8. Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7(5):637–660. https://doi.org/10.1002/wrna.1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Angart PA, Carlson RJ, Adu-Berchie K et al (2016) Terminal duplex stability and nucleotide identity differentially control siRNA loading and activity in RNA interference. Nucleic Acid Ther 26(5):309–317. https://doi.org/10.1089/nat.2016.0612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwarz D, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  CAS  PubMed  Google Scholar 

  11. Noland CL, Ma E, Doudna JA (2011) siRNA repositioning for guide strand selection by human dicer complexes. Mol Cell 43(1):110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakurai K, Amarzguioui M, Kim D et al (2011) A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res 39(4):1510–1525

    Article  CAS  PubMed  Google Scholar 

  13. Ozcan G, Ozpolat B, Coleman RL et al (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119. https://doi.org/10.1016/j.addr.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16(9):543–552. https://doi.org/10.1038/nrg3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beitzinger M, Meister G (2011) Experimental identification of microRNA targets by immunoprecipitation of Argonaute protein complexes. In: Dalmay T (ed) MicroRNAs in development, vol 732. Humana, Totowa, NJ, pp 153–167

    Chapter  Google Scholar 

  16. Chen CF, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  Google Scholar 

  17. Varkonyi-Gasic E, Wu R, Wood M et al (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tang F, Hajkova P, Barton SC et al (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):e9. https://doi.org/10.1093/nar/gnj009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kramer MF (2011) Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. Chapter 15:Unit 15.10

    Google Scholar 

  20. Jung U, Jiang X, Kaufmann SH et al (2013) A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA. RNA 19(12):1864–1873. https://doi.org/10.1261/rna.040501.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4):244–249. https://doi.org/10.1016/j.ymeth.2010.01.026

    Article  CAS  PubMed  Google Scholar 

  22. Czimmerer Z, Hulvely J, Simandi Z et al (2013) A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS One 8(1):e55168. https://doi.org/10.1371/journal.pone.0055168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14(5):844–852. https://doi.org/10.1261/rna.939908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  25. Caffrey DR, Zhao J, Song Z et al (2011) siRNA off-target effects can be reduced at concentrations that match their individual potency. PLoS One 6(7):e21503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim Y-K, Yeo J, Ha M et al (2012) Retraction notice to: cell adhesion-dependent control of microRNA decay. Mol Cell 46(6):896

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patrick Walton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Angart, P.A., Adu-Berchie, K., Carlson, R.J., Vocelle, D.B., Chan, C., Walton, S.P. (2019). Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs. In: Dinesh Kumar, L. (eds) RNA Interference and Cancer Therapy. Methods in Molecular Biology, vol 1974. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9220-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9220-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9219-5

  • Online ISBN: 978-1-4939-9220-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics