Skip to main content

A Practical Guide to miRNA Target Prediction

  • Protocol
  • First Online:
MicroRNA Target Identification

Abstract

MicroRNAs (miRNAs) are small endogenous noncoding RNA molecules that posttranscriptionally regulate gene expression. Since their discovery, a huge number of miRNAs have been identified in a wide range of species. Through binding to the 3′ UTR of mRNA, miRNA can block translation or stimulate degradation of the targeted mRNA, thus affecting nearly all biological processes. Prediction and identification of miRNA target genes is crucial toward understanding the biology of miRNAs. Currently, a number of sophisticated bioinformatics approaches are available to perform effective prediction of miRNA target sites. In this chapter, we present the major features that most algorithms take into account to efficiently predict miRNA target: seed match, free energy, conservation, target site accessibility, and contribution of multiple binding sites. We also give an overview of the frequently used bioinformatics tools for miRNA target prediction. Understanding the basis of these prediction methodologies may help users to better select the appropriate tools and analyze their output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  2. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  3. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(D1):D68–D73

    Article  CAS  PubMed  Google Scholar 

  4. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  5. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  7. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39(16):6845–6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214

    Article  CAS  PubMed  Google Scholar 

  9. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4):1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hatfield S, Shcherbata H, Fischer K, Nakahara K, Carthew R, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974

    Article  CAS  PubMed  Google Scholar 

  11. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8(3):278

    Article  CAS  PubMed  Google Scholar 

  12. Novák J, Olejníčková V, Tkáčová N, Santulli G (2015) Mechanistic role of microRNAs in coupling lipid metabolism and atherosclerosis. In: MicroRNA: basic science. Springer, New York, pp 79–100

    Chapter  Google Scholar 

  13. Cho W (2010) MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol 42(8):1273–1281

    Article  CAS  PubMed  Google Scholar 

  14. Micolucci L, Akhtar MM, Olivieri F, Rippo MR, Procopio AD (2016) Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget 7(36):58606

    Article  PubMed  PubMed Central  Google Scholar 

  15. Olivieri F, Capri M, Bonafè M, Morsiani C, Jung HJ, Spazzafumo L, Viña J, Suh Y (2017) Circulating miRNAs and miRNA shuttles as biomarkers: perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 165:162–170

    Article  CAS  PubMed  Google Scholar 

  16. Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD (2015) Bioinformatic tools for microRNA dissection. Nucleic Acids Res 44(1):24–44

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33(suppl 2):W701–W704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  19. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  22. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49(2):145–165

    Article  CAS  PubMed  Google Scholar 

  23. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  24. Lai EC (2004) Predicting and validating microRNA targets. Genome Biol 5(9):115

    Article  PubMed  PubMed Central  Google Scholar 

  25. Waterman MS, Eggert M (1987) A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J Mol Biol 197(4):723–728

    Article  CAS  PubMed  Google Scholar 

  26. Bray N, Dubchak I, Pachter L (2003) AVID: a global alignment program. Genome Res 13(1):97–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Couronne O, Poliakov A, Bray N, Ishkhanov T, Ryaboy D, Rubin E, Pachter L, Dubchak I (2003) Strategies and tools for whole-genome alignments. Genome Res 13(1):73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M (2014) The UCSC genome browser database: 2015 update. Nucleic Acids Res 43(D1):D670–D681

    Article  PubMed  PubMed Central  Google Scholar 

  29. Robins H, Li Y, Padgett RW (2005) Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A 102(11):4006–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14(4):287

    Article  CAS  PubMed  Google Scholar 

  31. Marín RM, Vaníček J (2010) Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res 39(1):19–29

    Article  PubMed  PubMed Central  Google Scholar 

  32. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Watanabe Y, Yachie N, Numata K, Saito R, Kanai A, Tomita M (2006) Computational analysis of microRNA targets in Caenorhabditis elegans. Gene 365:2–10

    Article  CAS  PubMed  Google Scholar 

  34. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Da Piedade I, Gunsalus KC, Stoffel M (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495

    Article  CAS  PubMed  Google Scholar 

  35. Ritchie W, Rasko JE, Flamant S (2013) MicroRNA target prediction and validation. In: MicroRNA cancer regulation. Springer, New York, pp 39–53

    Chapter  Google Scholar 

  36. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90

    Article  PubMed  PubMed Central  Google Scholar 

  37. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA. org resource: targets and expression. Nucleic Acids Res 36(suppl 1):D149–D153

    CAS  PubMed  Google Scholar 

  38. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4

    Google Scholar 

  39. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(suppl 2):W451–W454

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lall S, Grün D, Krek A, Chen K, Wang Y-L, Dewey CN, Sood P, Colombo T, Bray N, MacMenamin P (2006) A genome-wide map of conserved MicroRNA targets in C. elegans. Curr Biol 16(5):460–471

    Article  CAS  PubMed  Google Scholar 

  42. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  43. Loher P, Rigoutsos I (2012) Interactive exploration of RNA22 microRNA target predictions. Bioinformatics 28(24):3322–3323

    Article  CAS  PubMed  Google Scholar 

  44. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  CAS  PubMed  Google Scholar 

  45. Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14(6):1012–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong N, Wang X (2014) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(D1):D146–D152

    Article  PubMed  PubMed Central  Google Scholar 

  47. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(W1):W169–W173

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rennie W, Liu C, Carmack CS, Wolenc A, Kanoria S, Lu J, Long D, Ding Y (2014) STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Res 42(Web Server issue):W114–W118. (In press):gku376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273–W276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maragkakis M, Vergoulis T, Alexiou P, Reczko M, Plomaritou K, Gousis M, Kourtis K, Koziris N, Dalamagas T, Hatzigeorgiou AG (2011) DIANA-microT web server upgrade supports Fly and worm miRNA target prediction and bibliographic miRNA to disease association. Nucleic Acids Res 39(suppl 2):W145–W148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(D1):D109–D114

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu C, Mallick B, Long D, Rennie WA, Wolenc A, Carmack CS, Ding Y (2013) CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res 41(14):e138–e138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsu PWC, Huang H-D, Hsu S-D, Lin L-Z, Tsou A-P, Tseng C-P, Stadler PF, Washietl S, Hofacker IL (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34(suppl 1):D135–D139

    Article  CAS  PubMed  Google Scholar 

  55. Hsu S-D, Chu C-H, Tsou A-P, Chen S-J, Chen H-C, Hsu PW-C, Wong Y-H, Chen Y-H, Chen G-H, Huang H-D (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36(suppl 1):D165–D169

    CAS  PubMed  Google Scholar 

  56. Friedman Y, Naamati G, Linial M (2010) MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics 26(15):1920–1921

    Article  CAS  PubMed  Google Scholar 

  57. Friedman Y, Karsenty S, Linial M (2014) miRror-Suite: decoding coordinated regulation by microRNAs. Database 2014:bau043

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hsu JBK, Chiu C-M, Hsu S-D, Huang W-Y, Chien C-H, Lee T-Y, Huang H-D (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 12(1):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk - database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847

    Article  CAS  PubMed  Google Scholar 

  60. Shirdel EA, Xie W, Mak TW, Jurisica I (2011) NAViGaTing the micronome - using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 6(2):e17429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coronnello C, Benos PV (2013) ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res 41(W1):W159–W164

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang P, Ning S, Wang Q, Li R, Ye J, Zhao Z, Li Y, Huang T, Li X (2013) mirTarPri: improved prioritization of MicroRNA targets through incorporation of functional genomics data. PLoS One 8(1):e53685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vejnar CE, Zdobnov EM (2012) miRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res 40(22):11673–11683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vejnar CE, Blum M, Zdobnov EM (2013) miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res 41(W1):W165–W168

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu C, Bardes EE, Jegga AG, Aronow BJ (2014) ToppMiR: ranking microRNAs and their mRNA targets based on biological functions and context. Nucleic Acids Res 42(Web Server issue):W107–W113. gku409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ritchie W, Flamant S, Rasko JE (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6(6):397

    Article  CAS  PubMed  Google Scholar 

  67. Farh KK-H, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755):1817–1821

    Article  CAS  PubMed  Google Scholar 

  68. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28(6):771–776

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Akhtar, M.M., Micolucci, L., Islam, M.S., Olivieri, F., Procopio, A.D. (2019). A Practical Guide to miRNA Target Prediction. In: Laganà, A. (eds) MicroRNA Target Identification. Methods in Molecular Biology, vol 1970. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9207-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9207-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9206-5

  • Online ISBN: 978-1-4939-9207-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics