Skip to main content

Studying Functional Disulphide Bonds by Computer Simulations

  • Protocol
  • First Online:
Functional Disulphide Bonds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1967))

Abstract

Biochemical and structural data reveal important aspects of the properties and function of a protein disulphide bond. Molecular dynamics simulations can complement this experimental data and can yield valuable insights into the dynamical behavior of the disulphide bond within the protein environment. Due to the increasing accuracy of the underlying energetic description and the increasing computational power at hand, such simulations have now reached a level, at which they can also make quantitative and experimentally testable predictions. We here give an overview of the computational methods used to predict functional aspects of protein disulphides, including the prestress, protein allosteric effects upon thiol/disulphide exchange, and disulphide redox potentials. We then outline in detail the use of free-energy perturbation methods to calculate the redox potential of a protein disulphide bond of interest. In a step-by-step protocol, we describe the workflow within the MD suite Gromacs, including practical advice on the simulation setup and choice of parameters. For other disulphide-related simulation methods, we refer to resources available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Systematic validation of protein force fields against experimental data. PLoS One 7(2):e32131

    Article  CAS  Google Scholar 

  2. Lindahl E (2015) Molecular dynamics simulations. In: Molecular Modeling of Proteins. Springer, New York, pp 3–26

    Google Scholar 

  3. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  4. Schmidt B, Ho L, Hogg PJ (2006) Allosteric disulfide bonds. Biochemistry 45(24):7429–7433

    Article  CAS  Google Scholar 

  5. Zhou B, Baldus IB, Li W, Edwards SA, Gräter F (2014) Identification of allosteric disulfides from prestress analysis. Biophys J 107(3):672–681

    Article  CAS  Google Scholar 

  6. Costescu BI, Gräter F (2013) Time-resolved force distribution analysis. BMC Biophys 6(1):5

    Article  CAS  Google Scholar 

  7. Chen VM, Hogg PJ (2013) Encryption and decryption of tissue factor. J Thromb Haemost 11(s1):277–284

    Article  Google Scholar 

  8. Zhou B, Hogg PJ, Gräter F (2017) One-way allosteric communication between the two disulfide bonds in tissue factor. Biophys J 112(1):78–86

    Article  CAS  Google Scholar 

  9. Butera D, Passam F, Ju L, Cook KM, Woon H, Aponte-Santamaría C, Gardiner E, Davis AK, Murphy DA, Bronowska A et al (2018) Autoregulation of von Willebrand factor function by a disulfide bond switch. Sci Adv 4(2):eaaq1477

    Google Scholar 

  10. Cook KM, McNeil HP, Hogg PJ (2013) Allosteric control of βii-tryptase by a redox active disulfide bond. J Biol Chem 288(48):34920–34929

    Article  CAS  Google Scholar 

  11. Fernandes PA, Ramos MJ (2004) Theoretical insights into the mechanism for thiol/disulfide exchange. Chem A Eur J 10(1):257–266

    Article  CAS  Google Scholar 

  12. Neves RPP, Fernandes PA, Ramos MJ (2017) Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase. Proc Natl Acad Sci U S A 114(24):E4724–E4733, 201618985

    Article  CAS  Google Scholar 

  13. Baldus IB, Gräter F (2012) Mechanical force can fine-tune redox potentials of disulfide bonds. Biophys J 102(3):622–629

    Article  CAS  Google Scholar 

  14. Li W, Baldus IB, Gräter F (2015) Redox potentials of protein disulfide bonds from free-energy calculations. J Phys Chem B 119(17):5386–5391

    Article  CAS  Google Scholar 

  15. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. nonpolar gases. J Chem Phys 22(8):1420–1426

    Article  CAS  Google Scholar 

  16. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313

    Article  CAS  Google Scholar 

  17. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690

    Article  CAS  Google Scholar 

  18. Hummer G (2001) Fast-growth thermodynamic integration: Error and efficiency analysis. J Chem Phys 114(17):7330–7337

    Article  CAS  Google Scholar 

  19. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22(2):245–268

    Article  Google Scholar 

  20. Goette M, Grubmüller H (2009) Accuracy and convergence of free energy differences calculated from nonequilibrium switching processes. J Comput Chem 30(3):447–456

    Article  CAS  Google Scholar 

  21. Christ CD, van Gunsteren WF (2007) Enveloping distribution sampling: a method to calculate free energy differences from a single simulation. J Chem Phys 126(18):184110

    Article  Google Scholar 

  22. Woo H-J, Roux B (2005) Calculation of absolute protein–ligand binding free energy from computer simulations. Proc Natl Acad Sci U S A 102(19):6825–6830

    Article  CAS  Google Scholar 

  23. Crooks GE (1998) Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J Stat Phys 90(5–6):1481–1487

    Article  Google Scholar 

  24. Crooks GE, Jarzynski C (2007) Work distribution for the adiabatic compression of a dilute and interacting classical gas. Phys Rev E 75(2):021116

    Article  Google Scholar 

  25. Jeng M-F, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ (1994) High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure 2(9):853–868

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  27. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101–014101

    Article  Google Scholar 

  28. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122

    Article  CAS  Google Scholar 

  29. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  30. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539

    Article  CAS  Google Scholar 

  31. Gao J, Kuczera K, Tidor B, Karplus M (1989) Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244(4908):1069–1072

    Article  CAS  Google Scholar 

  32. Pearlman DA (1994) A comparison of alternative approaches to free energy calculations. J Phys Chem 98(5):1487–1493

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to the Klaus Tschira Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke Gräter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gräter, F., Li, W. (2019). Studying Functional Disulphide Bonds by Computer Simulations. In: Hogg, P. (eds) Functional Disulphide Bonds. Methods in Molecular Biology, vol 1967. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9187-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9187-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9186-0

  • Online ISBN: 978-1-4939-9187-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics