Skip to main content

Site-Specific Proteomic Mapping of Modified Cysteine Residues

  • Protocol
  • First Online:
Functional Disulphide Bonds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1967))

Abstract

The wide reactivity of the thiol group enables the formation of a number of chemically and biologically distinct posttranslational modifications. Proteins within nearly all major families undergo some form of cysteine modification and the modifications are associated with regulatory functions across many biological processes. However, the susceptibility of thiols to redox shifts, as well as the labile nature of most thiol modifications, renders detection difficult. Analysis difficulties are compounded further in complex protein mixtures due to the typical low abundance of cysteine modifications under normal physiological conditions. Here we describe methods for the analysis of three cysteine modifications: nitrosylation, glutathionylation, and S-acylation. The three methods use the same organic mercury-conjugated agarose resin as an enrichment platform. To date, over 2154 sites on 1446 proteins have been identified between the three modifications using this method. Using equivalent processing, enrichment, and analytical methods has enabled a more comprehensive picture of the redox proteome landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechtel TJ, Weerapana E (2017) From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17(6). https://doi.org/10.1002/pmic.201600391

  2. Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN (2007) High-throughput identification of catalytic redox-active cysteine residues. Science 315(5810):387–389. https://doi.org/10.1126/science.1133114

    Article  CAS  PubMed  Google Scholar 

  3. Brandes N, Schmitt S, Jakob U (2009) Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal 11(5):997–1014. https://doi.org/10.1089/ARS.2008.2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marino SM, Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287(7):4419–4425. https://doi.org/10.1074/jbc.R111.275578

    Article  CAS  PubMed  Google Scholar 

  5. Groitl B, Jakob U (2014) Thiol-based redox switches. Biochim Biophys Acta 1844(8):1335–1343. https://doi.org/10.1016/j.bbapap.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt B, Ho L, Hogg PJ (2006) Allosteric disulfide bonds. Biochemistry 45(24):7429–7433. https://doi.org/10.1021/bi0603064

    Article  CAS  PubMed  Google Scholar 

  7. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105(24):8197–8202. https://doi.org/10.1073/pnas.0707723105

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hansen RE, Roth D, Winther JR (2009) Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci U S A 106(2):422–427. https://doi.org/10.1073/pnas.0812149106

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1. https://doi.org/10.1126/stke.2001.86.pl1

    Article  CAS  PubMed  Google Scholar 

  10. Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4(9):783–799. https://doi.org/10.1021/cb900105q

    Article  CAS  PubMed  Google Scholar 

  11. Gould NS, Evans P, Martínez-Acedo P, Marino SM, Gladyshev VN, Carroll KS, Ischiropoulos H (2015) Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks. Chem Biol 22(7):965–975. https://doi.org/10.1016/j.chembiol.2015.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doulias P-T, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL, Ischiropoulos H (2010) Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci U S A 107(39):16958–16963. https://doi.org/10.1073/pnas.1008036107

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saville B (1958) A scheme for the colorimetric determination of microgram amounts of thiols. Analyst 83(993):670–672. https://doi.org/10.1039/AN9588300670

    Article  Google Scholar 

  14. Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Löwenhielm HB, Holmgren A, Cotgreave IA (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406(2):229–240

    Article  CAS  PubMed  Google Scholar 

  15. Drisdel RC, Alexander JK, Sayeed A, Green WN (2006) Assays of protein palmitoylation. Methods 40(2):127–134. https://doi.org/10.1016/j.ymeth.2006.04.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal S. Gould .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gould, N.S. (2019). Site-Specific Proteomic Mapping of Modified Cysteine Residues. In: Hogg, P. (eds) Functional Disulphide Bonds. Methods in Molecular Biology, vol 1967. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9187-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9187-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9186-0

  • Online ISBN: 978-1-4939-9187-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics